Handout #2: "Current State" Tables

The information in the following tables should be considered preliminary; we welcome feedback at the Charrette.

Table 1: Comparison of Predominant Building Simulation Engines DOE-2.2, EnergyPlus, CSE for Code Compliance, Deemed Measure Development, Custom Measure Development, Other Uses in California

Criteria	DOE-2.2/2.3	EnergyPlus	CSE (CEC Residential model)
	Deemed measures	Custom	Code compliance for residential
		Code Compliance for Commercial	
CA Regulatory & Policy Dire	ectives		
Transparency and	Source code can be obtained	Calculations, inputs, assumptions, and	Source code is publicly available via
Documentation ¹	for inspection in a form that	default values can be reviewed by	github:
	cannot subsequently be	anyone. EnergyPlus uses few default	https://github.com/cse-sim/cse
	compiled to an executable.	values.	
			Documentation for CSE is also
	DOE-2.1 algorithms are	Algorithms and assumptions are fully	available at github
	described in the Engineering	documented. ² Engineering as well as	
	Manual, DOE-2.2 Topics	input/output reference updated	
	Manual provides high-level	continuously and available both in HTML	
	engineering discussion.	and PDF.	
Inter-Agency	Not used by CEC, requires	Adopted by CEC Title 24 compliance	Developed for CEC and adopted by
Coordination – statewide	consultants to create	(non-residential), allows consultants to	Title 24 compliance (residential).
consistent energy savings	separate models for code-	use a single model for code-compliance	
values	compliance and ex ante	and custom ex ante incentives.	
	incentives.		
Use of Public Funds	Ratepayer dollars used to	Taxpayer dollars used to develop open-	
	develop proprietary software.	source software.	

¹ Rule 10.3(3)(B) of the Commission's Rules of Practice and Procedure.

² https://energyplus.net/sites/default/files/pdfs_v8.3.0/EngineeringReference.pdf.

Criteria	DOE-2.2/2.3	EnergyPlus	CSE (CEC Residential model)			
Operational	Operational					
Ownership	J.J. Hirsch	Regents of University of CA and Regents of University of IL	CSE Authors (Rob Barnaby, Charles Barnaby, Big Ladder Software, Wrightsoft Corp) under contract to CEC			
Licensing	Proprietary, source code not readily and freely available. Derivatives works are not permitted.	Commercialization-friendly open-source license that permits the development of proprietary derivative works and a variety of business models.	Open Source, may be redistributed with or without modification.			
Funding	CA Ratepayers (\$?)	DOE (\$3.5 million/year); in-kind contributions from industry. Funding level has been stable since 2010.				
Updates, Bug Fixes, and New Features	Few updates since 2009.	Smaller update released every other week, with major releases twice a year.	Updates as needed to address bug fixes and add features. All releases, new features and bug fixes documented on github			
Opportunities to	Controlled by vendor.	Large communities of developers, and	Code is available for review and			
Collaborate and Cost- Share		funding sources – work is readily peer reviewed and auditable for accuracy. CEC and DOE have a history of cost-sharing and collaboration.	modification; however, only persons who sign Contributor License Agreement may contribute code to original CSE library.			
Technical						
Programming Language	FORTRAN, legacy platform used by a small number of developers, with slowly advancing compiler support and few libraries.	C++, modern platform used by a large number of developers, with quickly advancing compiler support and a large number of libraries ³ .	C++			
Development Team	JJ. Hirsch and associates.	Large and evolving pool of developers (approximately 30 at any given time) that includes individuals from national labs,	Rob Barnaby Charles Barnaby			

_

³ A "library" in this context refers to a computer program module that automates a function so that the function does not need to be coded from scratch.

Criteria	DOE-2.2/2.3	EnergyPlus	CSE (CEC Residential model)
		universities, consultants and software vendors. Most developers are active in energy modeling professional, research, and standard-making organizations such as ASHRAE and IBPSA.	Bruce Wilcox Michael O'Keefe Neal Kruis Big Ladder Software Wrightsoft Corp
Development process & QA/QC	Development process is closed. Updates, including inputs,	New features and bug fixes undergo extensive review, testing, and documentation.	Development process, Q&A, and feedback primarily managed through github.
	calculations, assumptions and default values not readily available or subject to public peer review process, so errors or incorrect approaches may not be identified.	Source code repositories, issue tracker, automated test dashboard, feature request system, and Q&A forum are publicly available.	
Modeling capabilities ^{4 5}	In general, based on simplified equations developed when computation was more expensive ('70s and '80s).	In general, based on more sophisticated computations requiring greater computation power. Can "hook in" Radiance for daylight analysis.	CSE is a batch-based tool, which appears to use simplified equations. There is code addressing commercial buildings and equipment.
• Time step	Fixed one-hour time step precludes effectively modeling building controls, equipment cycling, and start/stop effects.	Variable timesteps as small as one minute can effectively model controls, equipment cycling behavior, and start/stop phenomena.	Fixed one-hour time step

_

⁴ Extensive comparison between DOE-2.2 and EnergyPlus performed in Nov. 2010 by H. Rallapalli as Masters Thesis at Arizona State University under supervision of H. Bryan, M. Addison and T. Reddy, http://repository.asu.edu/attachments/56303/content/rallapalli asu 0010n 10220.pdf

⁵ DOE-2.2 modeling capabilities from eQUEST documentation from EDR website (<u>www.doe2.com/download/equest/eQuestv3-Overview.pdf</u>). EnergyPlus modeling capabilities from EnergyPlus documentation and personal communications with DOE and NREL staff.

Criteria	DOE-2.2/2.3	EnergyPlus	CSE (CEC Residential model)
Commercial refrigeration	A separate build of DOE2.2 (DOE2.2R v52h) models commercial refrigeration equipment.	Models commercial refrigeration within the main (only) build.	N/A
Economics & utility tariffs	Hourly time-step limits accuracy for utility tariffs requiring sub-hourly calculations. A single tariff calculation for each energy source requires generation and T&D tariffs to be lumped and may require complex tariff structures to be simplified.	Sub-hourly time-step accurately model utility demand tariffs requiring sub-hourly calculations. Multiple tariff calculations for each energy source to be flexibly defined, allowing generation and T&D tariffs to analyzed individually. Supports complex tariff structures.	None found
Residential	Supports residential modeling.	Supports residential modeling except for leakage and radiant heat losses for ducts in unconditioned spaces, so is not yet approved for Title 24 compliance for residential buildings.	Supports residential modeling
Testing and Validation ⁶	Refers to standardized, cross-engine testing and validation, not to product testing performed by the developer or associates.		Unknown
ASHRAE 140 – analytical & comparative	Yes	Yes	

⁶ Validation of building energy simulation engines uses a combination of *analytical tests* (do simulated results match analytical results for simple configurations?), *comparative tests* (do different analytically sound engines produce similar results for more complex configurations?), and *empirical tests* (do simulated results match measured field results?).

Table 2: List of Interfaces for Each Building Simulation Engine

Criteria	DOE-2.2	EnergyPlus	CSE
	EQuest	Open Studio	CBECC-Res
	MASControl	Design Builder	EnergyPro
		CBECC-Com	Right-Energy Title 24
		EnergyPro	
		Simergy	
		IES-VE (for code compliance only)	

Table 3 List of "Rulesets" for Each "Use Case"

Use Case (Purpose of Model)	Rule Set	Documented and Calibrated?	Comments
Energy code compliance – demonstrate that building meets code under standardized conditions	Built into CEC building simulation tools and wrappers.		Does not produce energy savings for a particular building, rather determines code compliance.
Energy efficient building design tool – explore trade-offs and evaluate cost effectiveness of options	No rule set. Individual to building.		
Utility new construction programs – demonstrate that building meets program requirements	Title 24 as baseline		
Evaluation of utility whole building new construction programs – accurately estimate real-world savings performance of as-built participant buildings	No rule set, tailored to building		
Estimate efficiency measure savings using before/after metering data – use models to normalize metered data, and to control for non-measure variables. Rules for how to do this are still being developed.	Not applicable		
Estimate DEEMED savings for new, weather-dependent measures – same uses as above	"Ruleset" defined via DEER Building Prototypes		
Estimate savings for CUSTOM measures or bundles – Same issues as above for DEEMED measures, but limited to measures not suited to DEEMED approaches	Base on individual buildings (OR DEER assumptions)		