Cal TF eTRM Charrette GHG Calculation Approach

ROGER BAKER APRIL 12, 2019

- Current approach to calculating greenhouse gas impacts of EE measures is complex
 - Starts with CPUC-adopted Avoided Cost Calculator
 - Determines annual average GHG per MWh of energy
 - Parses annual value to hourly value per MWh based on supply mix
 - Assumes all avoidable supply comes from natural gas turbine
 - Uses market price as proxy for supply mix
 - Assumes higher market price reflects less efficient gas turbines
 - Lower market price would reflect increasing amount of renewables in mix
 - ▼These were most recently updated in August 2019

- ACC output is then "rolled up" for inclusion in Cost-Effectiveness Tool (CET)
 - Performed using Excel tool (e.g., SCE_PreProc mm-dd-yyyy.xlsm)
 - Uses hourly emissions outputs from ACC
 - Uses hourly end-use profiles from DEER 2011
 - Uses Time-of-Use mapping by utility
 - Addresses on-peak, partial peak, off-peak
 - Summer and Winter seasonal periods
 - Aggregates values to quarterly and annual values
 - Output from pre-processor tool is used to populate CET tables in SQL Server database

Greenhouse Gas Impact - POU

CMUA guidance provides several options

- Use CEC-forecasted emission rates
 - Need CEC buy-in
- Use GHG methodology and emission rates developed by CARB
 - Viewed as over-simplistic, not very robust
 - May not be acceptable to CEC
- Develop POU-specific emission rates
 - Would be most accurate
 - Also most expensive option, perhaps cost-prohibitive for smaller POUs
- Adopt emission rates based on E3 analyses for IOUs
 - Can be seen as most viable near-term
 - Data already exists, is considered robust by regulators

Recent Rulings

- Avoided Cost Calculator updated to reflect changes in supply mix
 - More renewables
- Fuel Substitution Decision may affect how emissions rates are determined and monetized
 - Currently, ACS uses average emissions rates
 - Load-building activities like gas-to-electric fuel substitution would be better served by using long-term marginal emission rates
 - □ No change adopted yet, due to complexities involved in modifying existing tools
- These (and other, unforeseen future decisions) may affect the hourly emission rate values
- However, the methodology proposed for eTRM should be flexible enough to incorporate any changes that may occur in future.

- Proposed eTRM methodology will use hourly profiles for energy savings and CO₂ emissions
- This approach will satisfy POU near-term desire for hourly emission impact data at measure level
- It also provides maximum flexibility to address emergent needs
 - Changes in DEER peak methodology
 - Allows rapid incorporation of new measures
 - Once a savings load shape is derived, the emissions profile and impacts can be readily determined in eTRM
 - In the future, it may allow tools like ACC and CET to be streamlined by offloading emissions calculations to eTRM
 - ACC may still monetize GHG at unitary rate and feed that value to CET
 - × ACC would still generate avoided cost components, but would feed directly to CET
 - Emissions profile (and savings load shape) can be transmitted to CET from eTRM as part of measure packet
 - CET can then monetize estimated savings using unitary rate provided by ACC
 - This could eliminate the pre-processing step between ACC and CET

Proposed GHG Treatment in eTRM

- For each measure, an hourly savings profile is assigned
 - □ 8,760 hour profile
- A greenhouse gas hourly profile is selected
 - May be utility specific, or may be CAISO profile (from Clean Net) Short calculator)
 - One table used for each year

Measure Savings:

45 kWh

Hourly Profile Table X CO2 Table

man, manie rabie						
Μ	D	Н	ES			
1	1	1	0.02%			
1	1	2	0.02%			
1	1	3	0.04%			
1	1	4	0.05%			
12	31	24	0.01%			

М	D	Ŧ	CO2			
1	1	1	0.030			
1	1	2	0.025			
1	1	3	0.025			
1	1	4	0.025			
	:	:	:			
12	31	24	0.040			
			•			

Hourly Reduction

М	D	Η	CO2		
1	1	1	0.00027		
1	1	2	0.00023		
1	1	3	0.00039		
1	1	4	0.00056		
12	31	24	0.00018		

Sum:

2.45

M = Month of year

D = Day of month

H = Hour of day

ES = Energy Saving fraction for

Hour

CO2 = CO2 Rate for Hour

Questions

- What source should be used for GHG emissions rates?
 - Ideally, should be source that IOUs and POUs can use interchangeably
 - What approach/source for GHG savings calculation should be used? Examples:
 - CPUC electrification proceeding (decarbonization)
 - ▼ POU cost-effectiveness calculator
 - **× IOU CET**
 - Climate Action Registry
 - CARB approach
 - ▼ IERP process Clean Net Short calculator
 - ■ Other?
- How often should values be updated?
 - May depend on approach selected

Questions

- How should GHG impacts for natural gas be addressed?
 - Single rate per therm
 - ▼ May not reflect effect of bio-methane and H₂ injection into pipeline
 - □ Are there load-shape dependent attributes to natural gas CO₂?
 - Seasonality
 - ✓ Geographic
- As GHG rates are updated, how should they be deployed to measures?
 - We could update measures, triggering a new version whenever rates change
 - We could store emissions values as separate process in eTRM
 - Decouple emissions rate versions from measure versions
- Do updates need to be applied retrospectively?
 - Example should 2021 CO₂ update be applied to 2020 measure version