Measure Savings Estimation: Fundamentals & Proposed Guidance AYAD AL-SHAIKH CHAU NGUYEN JENNIFER HOLMES JULY 23, 2020 ## Agenda - Objectives & Timeline - Recap - Fundamentals - Proposed Guidelines - Next Steps ### Overview #### Goal - Characterize current practices for developing savings by use category - Create best practice guidelines and templates for developing deemed savings #### Value - Facilitate the consistency of methods by use category - Ensure savings calculations are transparent and reproducible - Provide measure developers with trade-offs associated with each method to ensure accuracy and cost-efficiency ### Next Steps #### Presentation **Subcommittee** Subcommittee **Cal TF Review** Cal TF Review of of Final Draft Affirmation of Input June Cal TF **Draft Paper Paper** Final Paper meeting Late June. Mid July July Cal TF Sept Cal TF early July meeting meeting ## Recap: Current Practices - Approach - Reviewed savings analysis documentation of 130+ statewide measures - Categorization - Categorize in: Modeled, Calculation Tool, Calculated, Adopted from Another Source - Permutation Analysis - Four common parameters that affect permutation number - Large variation does exist - Claims Data Analysis - No significant correlation to calculation methodology or permutation count. ## Savings Methodology Fundamentals - 1. Comply with regulatory requirements. - 2. Represent average savings achieved by customers. - 3. Represent current market conditions. - Represent an "apples-to-apples" comparison between base and measure case usage. - 5. Represent manufacturer agnostics savings. - Investment in measure savings development should be commensurate with the measure contribution of impacts to the portfolio. - Be transparent and well documented to foster consistency and reproducibility. Use of "best available data". ## Measure Impact to Portfolio - Demonstrated High impact measure: - A measure predicted to immediately be high impact or has demonstrated high portfolio impact through the course of implementation. - Definition: >1% of savings for each fuel type - Normal impact measure: - A measure predicted to be normal impact, or that has demonstrated normal portfolio impact through the course of implementation. - □ *Definition*: Savings of <1% (for each fuel type) to average (not including HIMs) - Low impact measure: - A measure that is predicted to have a lower impact on the portfolio than average. - Definition: Savings that are below average - Interim measure: - A measure for which sufficient information is anticipated but not yet available that would satisfy the level of rigor for a measure predicted to be normal or high impact. Interim measures must be re-examined after 1 year or another duration determined by the Cal TF. - Definition: New measure (used proxy of NTG = ET, <2 yrs, and Fuel-sub) ## Measure Impact to Portfolio - 2019 Deemed IOU Claims - Definitions: - HIM: >1% of gas or electric savings - Normal: Average to 1% savings - Low: Below average savings - □ Interim (new measures): - × ET-NTG - × All-Default<2yr - ▼ Fuel Sub - Observation: 1% is a much smaller threshold today for electric (since lighting dominance is going away) ### Recommended Guidelines - Methodology: Choose an Impact Estimation Method that Aligns with the Measure Use Category - Documentation: Develop Measure Savings that Align with Cost-Effectiveness and Claims Requirements - Documentation: Document Influential Parameters for Sensitivity Analysis - 4. Documentation: Document Base Case and Measure Case Energy Usage - 5. Interactive Effects: Include Interactive Effects Consistently - 6. Permutations: Reduce Measure Complexity - 7. Program Data Collection: Identify Inputs That Should Be Collected Through Programs ### Guideline 1: Methodology Choose an Impact Estimation Method that Aligns with the Measure Use Category | Use Category – | Modeled | Calculation Tool | Calculated | Adoption of Values | |----------------------------------|-------------------------------------|--|---|---| | Technology Group | Modeled | Calculation 1001 | Calculated | from Another Source | | Building Envelope | Whole-Building | | | | | Service (RCx) | Energy Modeling (BEM) tools provide | | | | | Whole Building | accepted packages | | | | | HVAC | to evaluate complex, interacting | | | | | Refrigeration | building systems. | | | | | Compressed Air | | Simulation tools for specialized end-use | | RCT, ET Studies, | | Recreation (Pools) | | categories used when interactions | | custom projects,
EM&V, or | | Water Heating –
Equipment | | with other systems is not required. | | regression models
constitute a large | | Water Heating –
Water Fixture | | • | | portion of this category. | | Lighting | | | These measures involved relatively simple physics models or | | | Water Pumping | | | | | | Food Service | | | engineering | | | Appliance or Plug Load | | | calculations that are widely accepted. | | | Process | | | | | ### **Guideline 2: Documentation** Develop Measure Savings that Align with Cost-Effectiveness and Claims Requirements | 12 | | |----|--| | | | | Measure Application
Type | Description | 1 st Baseline | 2 nd Baseline | |----------------------------------|--|-----------------------------|-----------------------------| | Accelerated
Replacement (AR) | Measure is installed when the existing equipment is still operational. This type includes Repair Eligible and Repair Indefinitely measures. | Existing conditions | Code / Standard
Practice | | Normal Replacement
(NR) | Measure is installed when the existing equipment fails, or maintenance requires replacement. | Code / Standard
Practice | N/A | | New Construction (NC) | Measure is installed during construction instead of code/standard equipment. | Code / Standard
Practice | N/A | | Add-on Equipment (AOE) | Measure is installed to pre-existing "host" equipment that is still operational. | Existing conditions | N/A | | Building
Weatherization (BW) | Measure includes improvements to nonmechanical building structures or existing equipment that is essential to building function without maintenance. | Existing conditions | N/A | | Behavioral
(BRO- <u>Bhv</u>) | Measure includes informational or educational programs that influence energy-related practices. | Existing conditions | N/A | | Retrocommissioning (BRO-RCx) | Measure is installed/applied as part of retro-commissioning. | Existing conditions | N/A | | Operational
(BRO-Op) | Measures that improve the efficient operation of installed equipment. | Existing conditions | N/A | Source: Statewide Deemed Workpaper Rulebook, Table 3 (version 3.0, 1/1/2020) ## Guideline 3: Documentation Document Influential Parameters for Sensitivity Analysis - Understand which Parameters are more influential in the sensitivity Analysis - Document differently depending upon - Impact to the portfolio - Age of the measure #### Example: Pipe Insulation # Guideline 3: Documentation Document Influential Parameters for Sensitivity Analysis 14) Document differently depending upon the impact to portfolio | Approval Type | Low Impact | Normal Impact | High Impact | Interim | |--------------------------------------|------------------|--|--|--| | Short Term
(expires after 1 year) | | | | Sensitivity analysis
for highest impact
parameters | | |
 | |
 | 80% confidence level | | | I
I
I
I | | I
I
I
I | TF judgement for | | | | | | <u>precision</u> | | Long Term | TF judgment | Sensitivity analysis
for highest impact
parameters | Sensitivity analysis
for highest impact
parameters | | | | | 80% confidence level | 90% confidence level | | |
 | | TF judgement for | 10% precision | | | | | precision | | | - Input needed to apply precision and confidence levels - Consider 80% confidence limit for Normal Impact - Results from this guideline feed into: - Measure Complexity (Guideline 6) - Program Data Collection (Guideline 7) # Guideline 4: Documentation Document Base Case and Measure Case Energy Usage ### All measures: - Measure Characterization Template should be followed to guide developers - Measure Development and QA / QC Guidelines document - Being updated this month! -> (Still can find these on the Cal TF website) #### Modeled Measures Modeled Measure Documentation Template provides additional guidance specifically for modeled measures. # Guideline 5: Interactive Effects Include Interactive Effects Consistently 16) - General Guidance - Apply interactive effects when significant - Table supports general guidance - Specific Guidance - Normal and Low Impact Measures - Impacts should vary by more than 10% - High Impact Measures - Consider the affect on the portfolio - Improve interactive effect definition | Use Category –
Technology Group | Apply
Interactive
Effects? | Recommended
Approach | |------------------------------------|----------------------------------|---| | Building Envelope | Yes | Building Energy Model | | Service (RCx) | Yes | Building Energy Model | | Whole Building | Yes | Building Energy Model | | HVAC | Yes | Building Energy Model | | Refrigeration | Yes | Building Energy Model | | Compressed Air | No | | | Recreation (Pools) | No | | | Water Heating –
Equipment | No | | | Water Heating –
Water Fixture | No | | | Lighting | Yes | Commercial and
Residential Interactive
Effect Table | | Water Pumping | No | | | Food Service | No | _ | | Appliance or Plug
Load | Yes | Commercial and
Residential Interactive
Effect Table | | Process | No | | # Guideline 6: Permutations Reduce Measure Complexity - If permutations vary by less than 10%, collapse them - Avoid false precision | Low Impact | Normal Impact | High Impact | Interim | |--|--|--|--| | Savings vary by >10% due to variation by | Savings vary by >10% due to variation by | Consider the effect on the portfolio; include parameters | Savings vary by >10% due to variation by influential | | influential parameter | influential parameter | as appropriate | parameter | - Consider for - Shared Parameters that Impact Savings or Cost - Bldg Type, Climate Zone, Vintage - Measure-Specific Parameter that Impact Savings or Cost - Efficiency Tiers, Product Subcategories, Measure Application Type - Parameters that Do Not Impact Savings or Cost - Delivery Type # Guideline 7: Program Data Collection Identify Inputs That Should Be Collected Through Programs Example measure types | Measure Type | Reason to Collect Data | Sunset Period | |----------------------------------|---|---------------| | ivicasure rype | . todoo to comoc Data | Samsot onou | | Interim Measure | New measure with not enough
existing implementation data | 1 year | | Accelerated
Replacement | Existing conditions baseline | Judgement | | Add-On Equipment /
To-Code | Existing conditions baseline | Judgement | | Midstream /
Upstream Programs | <u>Document customer data</u>
(BT, CZ, HTR, etc) | EM&V Feedback | - Impose a "Sunset" date to reevaluate - Create a clear understanding of how the data will be evaluated and the next stage. ## **Next Steps** 19 #### Subcomm. Review of Draft Paper • Mid July # Cal TF Presentation of Guidelines July 23 Cal TF Meeting ## Subcomm. Meeting #3 Early Aug #### Feedback Deadline • Aug 14th #### Cal TF Review of Final Paper Early Sept #### Cal TF Affirmation of Final Paper Sept Cal TF Meeting If you can provide your feedback early (within July), we can work it into the presentation for the 3rd Subcommittee Meeting ### Appendix - Current Methods Slides - Categorization - Permutation Analysis - Claims Analysis ## **Current Methods - Categorization** ## Current Methods - Permutation Analysis Statewide Measures - Four factors dramatically effect the number of permutations - Building Types (24) - Climate Zones (16) - Delivery Types (3) - Offerings (varies) - Vintages (in the future) ## Current Methods - Claims Data Analysis - Claims data from 2018 (Q1-Q4) correlated to statewide measures. - No significant correlation to calculation methodology or permutation count.