Hybrid Measures Overview

AYAD AL-SHAIKH APRIL 23, 2020

Quick Updates

2

 We will have a page on the Cal TF website that includes the meeting materials from this subcommittee

DropBox link available for back-up materials

Agenda

- Subcommittee Overview
 - 4 Meetings; 33+ people on the distribution
 - ▼ IOUs, POUs, Implementers, CPUC Consultant, National Labs, Technical Reviews, CalTF Members
- Hybrid Measure Goals
 - Draft definition suggested
 - Example measures suggested and voted on
 - Types of Hybrid Measures
- Understanding Hybrid Measures
 - Example: Process Boiler
 - Disclaimer: Only one example explored so far.

Ask: We are still early in the process; If you want to contribute to this effort, please contact me to join. (typically meet every other Thursday, 12 – 2 pm)

Hybrid Measure

Goals

- For a discrete (but growing) number of measures, document a framework for how to submit the hybrid measure
- Clarity that the submittal is expected to result in packets that:
 - Provide deeper / more complete documentation
 - Require less review / oversight
 - Provide clarity and assurance on the approval process
- Captures data in a structured format that could:
 - ▼ Improve inputs over time
 - Result in converting the hybrid measure to a deemed measure
- Need standard process for application flow

Hybrid Measure

Target Measure

- Installed frequently, repeatably throughout the state
- Enough clarity about the installation exists that there is acceptable trade-off between rigor and other important elements (reliability of the measure savings amount, persistence, double-dipping, gaming, etc.)
- Clear relationship between impact parameters
- Minimum and maximum project size or incentive amount could exist
 - Ideally streamlined approach can reduce the minimum threshold of savings for accepting a project
 - Alternatively, more stringent "voluntary" M&V could increase the maximum incentive below which custom program review can be streamlined/waived

Hybrid Examples

- Example Types
 - Type 1: Today, measure considered to be custom
 - Calculation methodology generally accepted
 - ▼ Baselines generally accepted for various building types / customer sizes
 - Savings may vary significantly based upon one or more sensitive variables
 - Reasons for installation generally understood
 - Type 2: Today, measure considered to be deemed
 - In addition to Type 1 notes, special cases exist that are not included in deemed methodology
 - Excluded based upon project size (ie, Norm Units out of appropriate range)
 - Target market or delivery channel may not be included or possible
 - POU only measure

Data Flow – Ensure Consistency

(Strawman)

Project Feasibility

Post-Installation Report

Primary Contact Name Phone: xxx-xxx-xxxx

LADWP Hybrid Measure Data - 2019

CPP Measure	Sum of	Sum of kW	ı ivieasures i	Average
	Annual kWh	Savings		kWh
Chiller Performance Upgrade - Screw/Scroll Air Cooled Chiller	537,846	42.4	9	59,761
Chiller Performance Upgrade - Screw/Scroll Water Cooled Chiller	468,231	102.7	4	117,058
Lighting Fixture Replacements - Interior Lighting	895,634	137.6	16	55,977
Lighting Lamp Replacements - Parking Garage Lighting	28,521	3.3	1	28,521
Refrigerated Walk In Motor Performance Upgrade - Cooler Evaporato	20,571	62.1	12	1,714
Unitary HVAC Performance Upgrade - Mini-Split HP	4,917	10.0	1	4,917
Unitary HVAC Performance Upgrade - Package Terminal HP	24,422	12.6	1	24,422
Unitary HVAC Performance Upgrade - Packaged A/C	1,105,379	332.0	15	73,692
Unitary HVAC Performance Upgrade - Packaged HP	31,713	10.0	1	31,713
Variable Speed - HVAC Supply/Return Fan	702,457	127.5	15	46,830
Variable Speed - Process Fan	6,989	4.0	1	6,989
Variable Speed - Pump Condenser Water	109,814	-	1	109,814
Variable Speed - Pump Swimming Pool	30,896	77.2	4	7,724
Vending Machine Controls - Vending Machine	9,655	1.6	1	9,655
Window Film - Building Envelope	26,409	-	1	26,409
Zone Thermostat Programming Performance Upgrade - All Areas	219,995	10.0	2	109,998
Grand Total	4,223,449	933.00	85	

Voting on Potential Measures

Type 2 – Deemed Measure

(Strawman)

- Example that I wanted to show was the process boiler
 - Deemed Measure: SWWH008 Process Boiler (≤20 MMBTU/hr)

- Deemed: ¾ of the applications are 1/3 of the savings
- Hybrid: ¼ of the applications are 2/3 of the savings

Potential Process

Basic Calculation

$$UEC_{base} = \frac{Rated\ Load\ * \ LF\ * opHr}{Eff-base}$$

- Deemed: Capacity of ≤10 MMBTU/hr
 - 1 sensitive variable (Norm Unit = Rated Load)
- Hybrid: Capacity of 10 < x ≤ 20 MMBTU/hr
 - □ 2 sensitive variables
 - Rated Load (from specification sheet)
 - Calibration = LF * opHr (from customer input in Load Balance Tool)
 - LF = Load Factor (%); opHr = Annual Operating Hours (hrs/yr)
- Goal
 - Larger project that could have more risk would include a second variable to limit risk

Background Thinking

15

- Tighten bound of a second (or third) sensitive parameter
- Improve savings for larger projects by narrowing the distribution of savings

* Borrowed from RTF calculations.

Type 2 – Deemed Measure

(Strawman)

- Example of the process boiler
 - Deemed Measure: SWWH008 Process Boiler (≤20 MMBTU/hr)

- Submittal Package
 - Deemed measure needs to show proof of purchase and document capacity (ie, invoice).
 - What should a Hybrid application look like? Should it vary by measure, project size, etc?
 - Important to balance:
 - Maximizing rate payer funds
 - Ensuring savings accuracy

Next Steps

Next subcommittee meeting: Planning for May 7th

- Discuss:
 - □ Look at a second/third example...if we can get project data.
 - What would be included in an application?