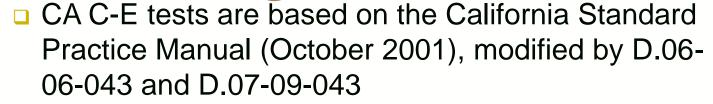
2020 Cal TF Business Plan

ANNETTE BEITEL AYAD AL-SHAIKH ROGER BAKER DEC 16TH – PAC MEETING

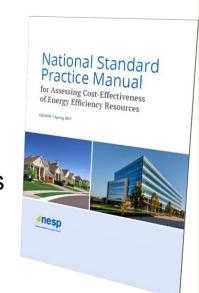
Agenda

- Focus on impactful issues that have potential to increase opportunity for savings, cost-effectiveness and EE potential, including
 - CET calculation methodologies/inputs (IOU and POU)
 - Valuing GHG savings
 - Reviewing potential study methodology
 - Extending deemed measures to new measure types
 - □ BP Item Removed: Custom Process Improvement

CET Calculation Methodologies / Inputs


3

Background; C/E Test (TRC)



Nationally developed C/E guidance (Spring 2017)

- CA test not aligned with national TRC test or TRC calculations in any other jurisdiction in one key respect
 - CA includes Incentives for free riders as program costs in TRC
 - ▼ Result: Reduces CA TRC

IOU and POU Tool Comparison

- IOU CET was compared with E3 POU calculator
 - Energy Platforms code was not available for inspection
 - Key difference from E3 POU calculator and EP tool is the incorporation of hourly load shape data for energy savings and CO₂ impacts
 - Many issues with IOU CET tool
 - Certain values (GHG) not correctly calculating (underreports GHG); CPUC fixing
 - No documentation/administrator manual/schema
 - Quality of code

Stability of code – questionable, sometimes referred to as "spaghetti code"

Tool Comparison – Findings

- The underlying tools are fairly similar
 - This owes to them originating from the same basic E3 tool
 - The EP tool builds on the E3 capabilities by incorporating hourly data into its analyses
 - EP tool also provides more sophisticated data rendering
 - Graphs, charts, powerful presentment capabilities built-in
 - CET is designed as a high-volume cost-effectiveness calculator
 - Not designed as a data presentment tool or for analytics (no whatif scenario capability)

Discussion: Desired Future State?

- C/E Calculation Approach
 - Standardized across IOUs and POUs
 - Consistent with National TRC Approach
 - Incentives for free riders not treated as program costs
 - Hourly inputs
 - Load profiles and GHG emissions
 - All avoided cost elements valued
 - T&D can be included (or not)
 - Carbon reporting calculation consistent across state
 - GHG for purposes of reporting pounds of carbon reduction
 - Include all "resources" in calculation
 - Treat water as "resource" in CA

Discussion: Desired Future State?

Tool Features

- Tool in PostgreSQL, documented, transparent (can be inspected), includes documentation, user manual, schema
- Sophisticated data analytics and presentment
- No license fee
- Web-based interface

Valuing GHG Savings

Greenhouse Gas Impact

- Current approach to calculating greenhouse gas impacts of EE measures is complex
 - Starts with CPUC-adopted Avoided Cost Calculator
 - Determines annual average GHG per MWh of energy
 - Parses annual value to hourly value per MWh based on supply mix
 - Assumes all avoidable supply comes from natural gas turbine
 - Uses market price as proxy for supply mix
 - Assumes higher market price reflects less efficient gas turbines
 - Lower market price would reflect increasing amount of renewables in mix
 - ▼ These were most recently updated in August 2019

Greenhouse Gas Impact

- ACC output is then "rolled up" for inclusion in Cost-Effectiveness Tool (CET)
 - Performed using Excel tool (e.g., SCE_PreProc mm-dd-yyyy.xlsm)
 - Uses hourly emissions outputs from ACC
 - Uses hourly end-use profiles from DEER 2011
 - Uses Time-of-Use mapping by utility
 - Addresses on-peak, partial peak, off-peak
 - Summer and Winter seasonal periods
 - Aggregates values to quarterly and annual values
 - Output from pre-processor tool is used to populate CET tables in SQL Server database

Greenhouse Gas Impact - POU

CMUA guidance provides several options

- Use CEC-forecasted emission rates
 - Need CEC buy-in
- Use GHG methodology and emission rates developed by CARB
 - Viewed as over-simplistic, not very robust
 - May not be acceptable to CEC
- Develop POU-specific emission rates
 - Would be most accurate
 - Also most expensive option, perhaps cost-prohibitive for smaller POUs
- Adopt emission rates based on E3 analyses for IOUs
 - Can be seen as most viable near-term
 - Data already exists, is considered robust by regulators

Recent Rulings

- Avoided Cost Calculator updated to reflect changes in supply mix
 - More renewables
- Fuel Substitution Decision may affect how emissions rates are determined and monetized
 - Currently, ACS uses average emissions rates
 - Load-building activities like gas-to-electric fuel substitution would be better served by using longterm marginal emission rates
 - No change adopted yet, due to complexities involved in modifying existing tools
- These (and other, unforeseen future decisions) may affect the hourly emission rate values
- However, the methodology proposed for eTRM should be flexible enough to incorporate any changes that may occur in future.

Greenhouse Gas Impact

- Proposed eTRM methodology will use hourly profiles for energy savings and CO₂ emissions
- This approach will satisfy POU near-term desire for hourly emission impact data at measure level
- It also provides maximum flexibility to address emergent needs
 - Changes in DEER peak methodology
 - Allows rapid incorporation of new measures
 - Once a savings load shape is derived, the emissions profile and impacts can be readily determined in eTRM
 - In the future, it may allow tools like ACC and CET to be streamlined by offloading emissions calculations to eTRM
 - ACC may still monetize GHG at unitary rate and feed that value to CET
 - ACC would still generate avoided cost components, but would feed directly to CET
 - Emissions profile (and savings load shape) can be transmitted to CET from eTRM as part of measure packet
 - CET can then monetize estimated savings using unitary rate provided by ACC
 - This could eliminate the pre-processing step between ACC and CET

Reviewing Potential Study Methodology

(15)

Reviewing Potential Study Methodology

- General belief that current process is opaque, difficult to follow, and not very accurate
- CPUC held 2-day workshop on P&G process
 - Next study cycle begins July/August 2020
 - Questions raised regarding integration of fuel-substitution
 - × Process
 - Quantification
 - Should study metric be changed from achievable kWh/therms to achievable carbon reduction?
- PAC Feedback
 - □ A more inclusive process, in general, will benefit all parties
 - CalTF should lead process reform discussions. Some key objectives:
 - Transparency
 - Ensure that emerging technologies and BRO savings get captured
 - Ensure that baselines reflect what exists in state today

Title 12/18/2019

Extending Deemed Measures to New Measure Types

- New Measure Types
 - Procedural
 - Savings from ex post; Example: Universal Audit Tool
 - Existing conditions/flexible baseline
 - Whole building / AB802 measures
 - Focus on customer-type specific baselines due to customer type/size, building vintage, etc.
 - Targeted
 - Focus on customer-type specific baselines due to geography for water-energy savings, hard-to-reach, constrained areas, etc.
 - Fuel substitution
 - SCE submitting several examples now
 - NMEC
 - Simple measure bundles (ZNE and decarbonization)
 - Codes and Standards
 - Hybrid (included in later slides)
 - Streamline custom to improve rigor, improve customer experience, and increase participation

Goal #6: Hybrid Measure Concept

Goals

- For a discrete (but growing) number of custom measures
- Clarity on the submittal is expected to result in packets that:
 - Provide deeper / more complete documentation
 - Require less review / oversite
 - Provide clarity and assurance on the approval process
- Result: More projects and better Customer Experience
- Captures data in a structured format that could:
 - Improve inputs over time
 - Result in converting the hybrid measure to a deemed measure

LADWP Success

- 60% of the custom projects = 10% of the savings
- Increased participation in custom program
- Focus engineering efforts on larger projects