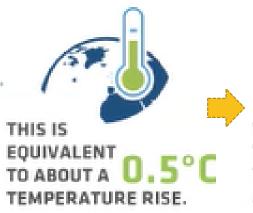
Lifecycle Refrigerant Management

ROBERT MOWRIS / VERIFIED

AYAD AL-SHAIKH / CAL TF STAFF

NOVEMBER 2022

Presentation Overview



Objective: Provide update on proposed measure package

- Lifecycle Refrigerant Management (LRM) Background
- Goals of LRM are to support the Kigali Amendment
- Flow Chart: Process and Measures

Background:

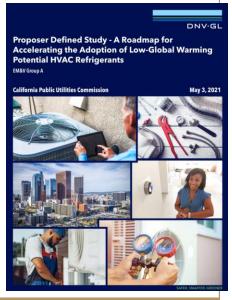
- Training
- Sensitivity analysis
- Assumptions in Refrigerant Avoided Cost Calc (RACC)
- Non-invasive Temperature Diagnostics (NTD)

Baseline

Lifecycle Refrigerant Management

Background

LRM Goal is to achieve 2016 Kigali Amendment of reducing warming due to HFC/HCFCs from 0.5°C to 0.04°C by year 2100.


LRM Report

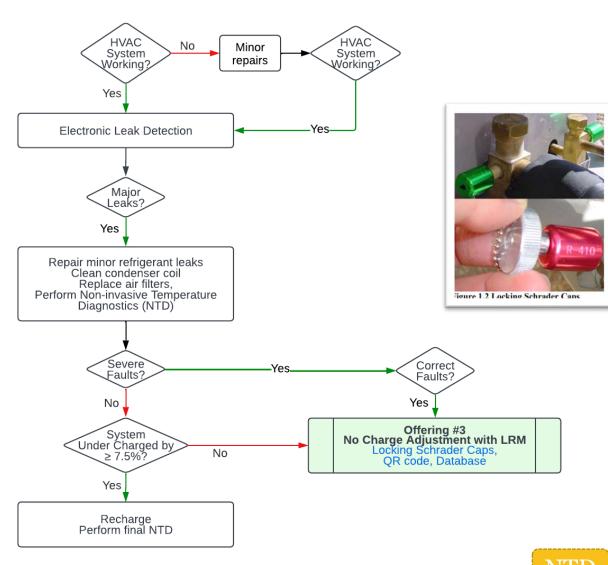
- Enhanced refrigerant stewardship
- Increase refrigerant recovery, reclamation and reuse
- Leak reduction
- Reporting and enforcement
- Workforce development
- Installation and servicing

DNV Evaluation

- Workforce training
- Leak detection and repair
- Non-invasive Temperature Diagnostics (NTD)
- Leak prevention with locking Schrader caps
- Significant recharge only

4

Lifecycle Refrigerant Management

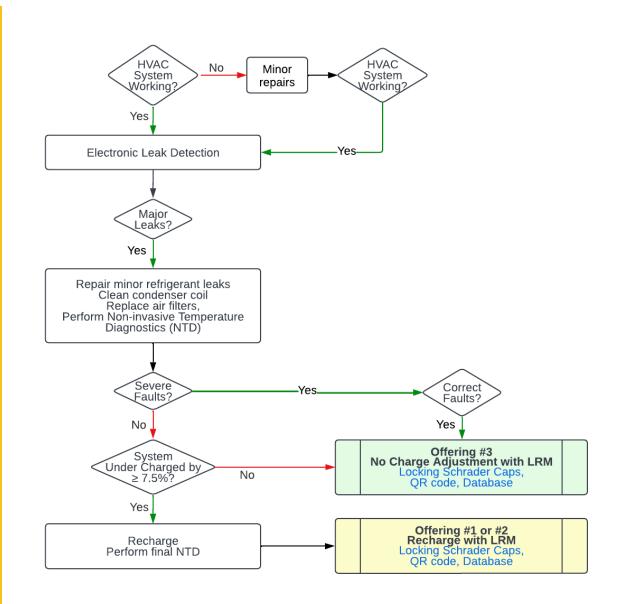

Project Flow

Offering #3 No Charge Necessary

- Clean condenser
- New air filter
- Leak prevention
- Non-invasive test
- Database reporting

TRC ~ 1

5


Lifecycle Refrigerant Management

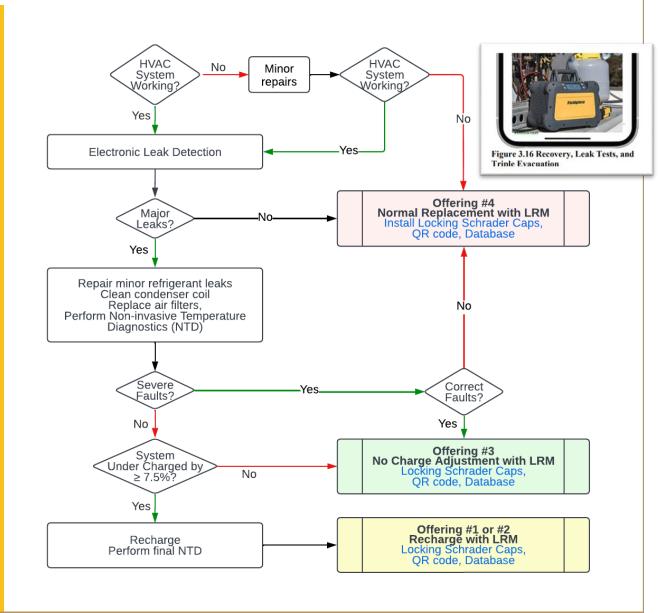
Project Flow

Offering #1 or 2 Charge Added

- Clean condenser
- Clean filter
- Leak prevention
- Non-invasive test
- Database reporting
- Added refrigerantTRC ~ 1

CALIFORNIA TECHNICAL FORUM

Lifecycle Refrigerant Management


Project Flow

Offering #4 Normal Replacement

- EOL Recovery from existing system
- New system
- Leak prevention
- Database reporting

TRC > 2.5

CALIFORNIA TECHNICAL FORUM

		=/
1	_	- //
(7	1
Λ	/	
//		//

Offering	Description CZ01-CZ16	kWh/y	kW	UnitRefBen	Material	Labor	TRC
1	Recharge with LRM, AC	177	0.12	\$156	\$100	\$175	0.9
2	Recharge with LRM, HP	285	0.12	\$156	\$100	\$175	1.1
3	No Recharge with LRM	1 0	0	\$156	\$50	\$100	1
4	Normal Replacement with LRM	0	0	\$764	\$ 50	\$100	> 2.5

Based upon 7.5% refrigerant recharge

Refrigerant Annual Leak reduced by 90%

Refrigerant <u>Annual Leak</u> reduced by 90% And

End of Life Reclaim for existing equipment

Notes:

LRM = Lifecycle Refrigerant Management (includes leak detection & repair, clean condenser coil, replace air filters, non-invasive temperature diagnostics, and locking Schrader caps.)

All offering available for TxV and Non-TxV

All offering vary by climate zone

Additional offerings proposed for new construction (not shown).

Questions

Contact

Robert Mowris at: Robert@verified.co

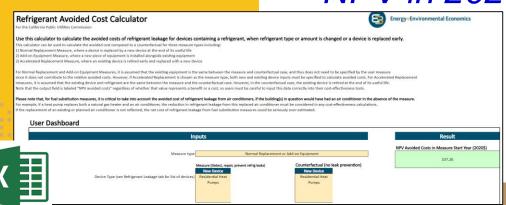
Ayad Al-Shaikh at: Ayad.Al-Shaikh@futee.biz

Offering	Description CZ01-CZ16	kWh/y	kW	UnitRefBen	Material	Labor	TRC
1	Recharge with LRM, AC	177	0.12	\$156	\$100	\$175	0.9
2	Recharge with LRM, HP	285	0.12	\$156	\$100	\$175	1.1
3	No Recharge with LRM	0	0	\$156	\$50	\$100	1
4	Normal Replacement with LRM	0	0	\$764	\$50	\$100	> 2.5

Back-up Topics

- Workforce training
- Sensitivity analysis
- Assumptions in RACC
- Noninvasive Temperature Diagnostics (NTD)
 - Measurement points / screen

Assumptions in RACC


Refrigerant Avoided Cost Calculator (RACC)

Calculator Demo

- o First year: 2023
- End of Life Leakage (no adjustment)
- Annual Leakage: 5% -> 0.5%
 - ▼ 90% savings
 - ➤ Base upon locking Schrader cap retention study showing 99% after 2 years.

 2006 Retention Study Aloha Systems (CALMC)

 https://www.calmac.org/publications/RCAVP Final EM&V Report.pdf
- Result: Refrigerant Cost/Benefit as NPV in 2020 dollars

LRM Training Manual

LIFECYCLE REFRIGERANT MANAGEMENT
(LRM) TRAINING MANUAL: NON-INVASIVE
TEMPERATURE DIAGOSTICS (NTD)

Copyright 2004-2022

VERIFIED® Inc.

P.O. Bez 1900, Styreight CA, 66146 - CSLB 91092745 C20, C34
Robert Mourilly F.E. - 300-4452-091 - Industries Friends C6
En June 1- 300-412-0864 - Bandlingser/IndusC6

En June 1- 300-412-0864 - Bandlingser/IndusC6

LRM Training Manual

TABLE OF CONTENTS

1. Overview	
1.1 Safety	2
1.2 Methods	
1.4 Equipment Calibration	3
1.5 Rationale for NTD Method and AC Tune-up	3
1.6 General Installation Requirements	3
1.7 Leak Detection	3
1.8 All Installations	
2. Condenser Coil Cleaning (All Systems)	
2.1 Proper Condenser Coil Cleaning Tools (All Systems)	
2.2 Proper Condenser Coil Cleaning Verification	
3. Non-invasive Temperature Diagnostics (All Systems)	
3.1 NTD Tools (All Systems)	
3.2 NTD Verification (All Systems)	
3.3 NTD Fault Detection (All Systems)	. 11
4. Refrigerant System Diagnostics and Leak Prevention	. 18
4.1 Non-Condensable Fault Detection Diagnostics	
4.2 Refrigerant Restriction Fault Detection Diagnostics	
4.3 Refrigerant Recovery and Evacuation Tools	. 22
4.4 Purging Non Condensables and Contaminated Refrigerant from Hoses and Manifold	. 23
4.5 Connecting Refrigerant Hoses to AC and HP Systems	
4.6 Disconnecting Refrigerant Hoses from AC and HP Systems	. 24
4.7 Refrigerant Recovery and Leak Testing Procedure	. 24
4.8 Schrader Core Repair Procedure	
4.9 Mini-Split AC and Heat Pump Installation Procedure	. 28
4.10 Refrigerant Pressure Test and Evacuation Procedure	. 29
4.11 Refrigerant Charging Procedure	
5. Equipment and Calibration	
5.1 Equipment	
5.2 Calibration	
6. General Troubleshooting	
6.1 Check Minor Cooling or Heating Issues	
6.2 Check Contactors	
8.3 Check Capacitors	
6.4 Check Transformer	
6.5 Check Fuses	
Appendix A: Air Conditioner Model Numbers	
Appendix B: LRM Equipment List	
Appendix C: LRM Checklist	. 43

Non-Invasive Temperature Diagnostic (NTD)

RDT - Return-air Dry-bulb Temperature

RWT - Return-air Wet-bulb Temperature

SDT – Supply-air Dry-bulb Temperature

OAT – Outdoor Air Temperature

ST – Suction Temperature (refrigerant)

LT – Liquid Temperature (refrigerant)

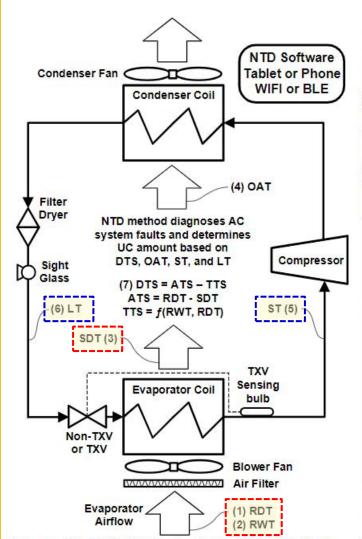
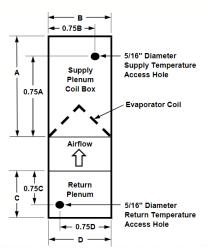


Figure 3.1 HVAC Schematic for NTD Method

Figure 3.2 NTD Verified RCA



Sensitivity Analysis

13)

- Conclusion: Calibration and choice of probes is important to result:
 - Return Wetbulb Temperature (RWT)
 - Return Drybulb Temperature (RDT)
 - Supply Drybulb Temperature (SDT)
- Sensitivity shows results are conservative, resulting in no charge (VRCA).

Table 2:	: LRM Uncertair	nty Analysis for NTD Metho	d at 95F	OAT (Inte	ertek Data	a)
	lead a set a la Tarad	NTD Mothed Uncertainty		0.7	DWT	

#	Intertek Test	NTD Method Uncertainty		LT	ST	RWT	RDT	SDT	DTS
7	NT Base FC	No Recharge	-0.6% ± 1.2%	103	59	67	80	62	-0.6
8	NT UC -5%	No Recharge	-3.7% ± 2%	104	72	67	80	65	-3
9	NT UC -10%	Undercharged	-11.5% ± 3.4%	105	80	67	80	69	-7
10	NT UC -20%	Undercharged	-18.1% ± 4.1%	103	82	67	80	71	-8.9
11	NT UC -30%	Undercharged	-31.8% ± 5.5%	100	81	67	80	74	-12.7
12	NT UC -40%	Undercharged	-38.1% ± 6%	99	81	67	80	76	-14.1
22	TXV Base FC	No Recharge	3.7% ± 2%	104	50	67	80	62	-1
23	TXV UC -5%	No Recharge	2.8% ± 5%	107	61	67	80	63	-1.1
24	TXV UC -10%	Undercharged	-8.5% ± 4.7%	106	69	67	80	64	-2.4
25	TXV UC -20%	Undercharged	-20% ± 4.2%	104	77	67	80	67	-5.7
26	TXV UC -30%	Undercharged	28.7% ± 3.7%	102	81	67	80	70	-8.6
27	TXV UC -40%	Undercharged	-41.0% ± 3%	98	81	67	80	75	-12.9

Figure 4. Psychrometers to measure air temperatures provide +/-1F accuracy

Key:

TXV - Thermal expansion valve

NT - non-TXV

FC - Full charge

UC – Under-charge, recharge required

VRCA – Verified that <u>no</u> charge required