Steam Boiler Plant Add-On Custom Measure Package

SPENCER LIPP, PE

Presentation Overview

 Today, we are seeking TF affirmation of the <u>Steam Boiler Plant Add-On Custom Measure</u> <u>Package (CMP)</u>.

- Overview of CMP Development
- CMP Scope: Measures and MAT
- CMP Content w/ Key Discussion/Decision Points
- TF Discussion
- TF Affirmation

Steam Boiler Plant Measure Package

Materials

Measure Package

- Measure Characterization
- Orimary tool:
 - **DOE MEASUR**
- Secondary support tools
 - Steam Boiler Economizer Auxiliary Calculation Procedure

Group Members

- Steven Long* (ICF)
- Roger Baker* (Independent)
- Myrna Dayan* (Cascade)
- Wayne Chi (SCG)
- Afshan Hasan (SCG)
- Wilfredo Garcia (SCG)
- Anthony Zavala (SCG)
- James Gingras (PG&E)
- Jessie Wang (SDG&E)
- Glen LaPalme (TRC)
- Novi Leigh (ICF)
- Ryan Rodriguez (Willdan)
- Shafi Armoni (Cascade)
- * TF member

Hyperlinks require access to the Custom Subcommittee SharePoint site; email spencer.lipp@futee.biz to request access.

Steam Boiler Plant CMP Timeline

August 2023 Working Group Started February 2024 Subcommittee Review April 2024 Incorporate Cal TF Review Comments

Draft CMP Completed January 2024 Cal TF Review March 2024

Share with CPUC for Comments

April 2024

CMP Measures

Custom Measures

- Stack economizer
 - Feedwater (AOE) SWPR007 limited
 - Condensing (AOE) SWPR007 limited
 - RCx existing system (BRO)
- Blowdown system
 - Automated control (AOE)
 - Heat recovery (AOE)
- Combustion system
 - Combustion controls (AOE)
 - Burner retrofit (NR/AR)
- Deaerator (DA)/make-up water system
 - Deaerator optimization (BRO)
 - Water treatment system (AOE)
 - Water treatment system controls (AOE)

Related Deemed Measures

- SWPR007 Steam Boiler Economizer, Industrial
 - Non-condensing and condensing economizer
 - Boiler input rating ≤ 20 million Btu/hr
 - Commercial, industrial, and agriculture sectors

Measure Application Types – TF Input

Category	Measure	Description	MAT		
	Feedwater	Sensible heat recovery			
Stack	Condensing	Indirect or direct latent heat recovery			
Economizer	Feedwater and condensing	Sensible and latent heat recovery			
	RCx existing system	Operational adjustments	BRO		
	Automated control	Automates blowdown through measurement of water conductivity	AOE		
Blowdown	Heat recovery	System to use waste heat to preheat make up water or offset DA steam usage	AOE		
Combustion	Controls	O ₂ trim control with a combustion blower VFD	AOE		
System	Burner retrofit	Retrofit to more efficient burner. Often coupled with a Selective Catalytic Reduction (SCR) system	NR/AR		
	DA tank optimization	Adjust DA tank pressure set-point to reduce steam pressure	BRO		
DA/Make-up System	Water treatment system	New system to use reverse osmosis process discharge water as make up water	AOE		
	Water treatment system controls	Additional controls to optimize water use and efficiency through increased hot water reclamation or increased feedwater temperature	AOE		

Combustion Controls AOE MAT – TF Input Fornia

- Review of CPUC language and definition for combustion controls
 - E-4818 AOE definition
 - New equipment onto existing host that improves host efficiency (new controls that improves boiler efficiency)
 - Host system operational without AOE (boiler operates with existing combustion controls, example parallel positioning)
 - Energy reduction occurs at the host equipment (savings occur at the boiler and blower)
 - Replacement of AOE equipment
 - Broken or poorly performing AOE equipment returning to previous efficiency levels is BRO or NR with a like for like (O₂ trim increases efficiency)

Combustion Controls AOE MAT – TF Input Fornia

- Track 1 Working Group Report
 - T1WG AOE Example #5 (emphasis added)

An existing controls system with scheduling features only is replaced with a new system capable of multiple **additional functions** including optimized start/stop, local occupancy override, and other functions that are not present in the old system. The implementation plan includes the replacement of existing on/off actuators and temperature sensors.

This measure is largely an AOE since controls are an add-on measure and the proposed system is **a nominal improvement over the old system with additional energy functionality**. However, the replacement of like-with-like components (actuators and sensors) is restorative.

- Working group decision consideration
 - ▼ O₂ trim systems decrease the excess O₂% to target 3% from ~5% for parallel positioning systems
 - Nominal energy improvement at the host equipment over the old system
- Any TF Concerns with AOE categorization?

Baseline Considerations

- Existing conditions
 - 10 of the 11 measures are AOE or BRO
 - Burner retrofit for AR requires existing system meets
 CARB/local AQMD requirements
- Standard practice baseline
 - Burner retrofit
 - Burner system that meets the requirements of current and/or known future CARB requirements
 - x 35 Air Pollution Control Districts (APCD) and Air Quality Management Districts with varying requirements

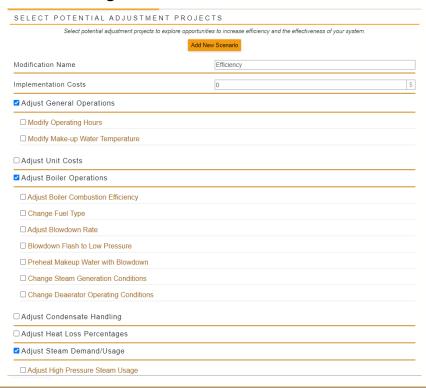
Eligible Products and Program Exclusion

Eligibility

Exclusions

- Steam boilers only
- All Residential and Non-Residential sectors of any vintage
- Any climate zone

- New feedwater and/or condensing economizer for systems ≤ 20 kBtu/hr
- New construction
- Steam without natural gas as a fuel source
- Boilers designed to be condensing boilers not eligible for stack heat recovery


Primary Calculation Tool

DOE MEASUR

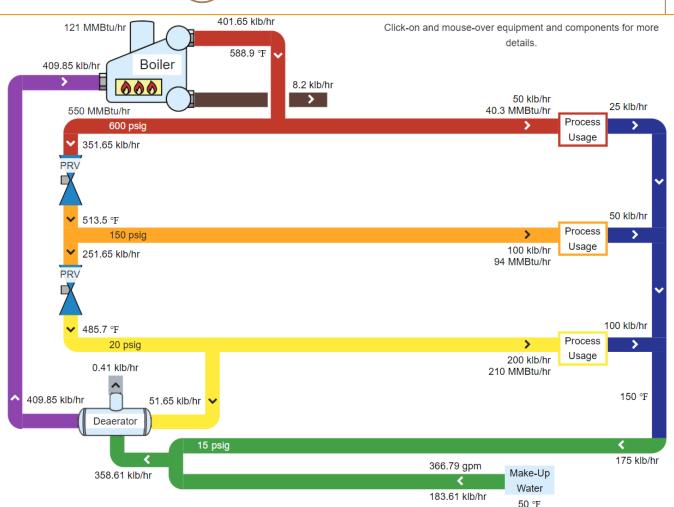
- Updated and maintained version of the DOE Steam System Assessment Tool
- Submodules and calculators incorporated into MEASUR assessment to calculate savings for most measures

Submodules Used

- Modify Make-up Water Temperature
- Adjust Boiler Combustion Efficiency
- Adjust Blowdown Rate
- Blowdown Flash to Low Pressure
- Preheat Make-up Water with Blowdown
- Change Deaerator Operating Conditions
- Adjust Steam Usage

Secondary Calculation Tool

- Steam Boiler Economizer Auxiliary Calculation Procedure (Option)
 - Guidance on incorporating MEASUR economizer calculator
 - Identifies input data location from MEASUR
 - Alternative to modifying combustion efficiency in MEASUR


	A	В	С	D	E	F	G	Н	Н
1	DOE MEASUR Version Number			Source					
2	Operating Hours	8760	hr/yr	[from System Setup Operations Operating Ho		ating H	Hours]		
3	Fuel	Natural Gas	Choose	[from Sys	tem Setup	Operation	ons Fuel 1	Гуре]	Calculator Output/Results
4	Higher Heating Value		Btu/SCF	[default f	from Feedw	ater Econ	omizer]		
5	Fuel Cost	5.78	\$/MMBtu	[from Sys	tem Setup	Operation	ons Fuel (Cost]	Flow Rate of Flue Gases 110,149,167 MMBtu/y
5	Fuel Temperature	60	°F	INPUT SO	URCE				Flow Rate of Steam 100,088,158 MMBtu/y
7	Flue Gas Temperature	400	°F	[from Boiler Efficiency/Stack Loss Calculator]					Flow Rate of Feedwater 103,090,803 MMBtu/y
8	Percent O2 or Excess Air	O2	Choose	se [from Boiler Efficiency/Stack Loss Calculator] +				tor]	
9	O2 in Flue Gas/Excess Air	3	%	[from Bo	iler Efficien	cy/Stack L	oss Calcula	1011	Enthalpy of Steam 1,196 MMBtu/yr
0	Combustion Air Temperature	80	°F	INPUT SO	URCE				Enthalpy of Feedwater 196 MMBtu/yr
1	Moisture in Combustion Air	0.0077	%	[default f	from Boiler	Efficiency	Calculator]	Flue Gas Outlet Temperature 296 °F
2	Boiler Energy Rate Input	125512.8	MMBtu/h	[from Dia	igram Boil	er Energy	Input]		Feedwater Outlet Temperature 256 °F
3									
4	Steam Quality	Saturated	Choose						Annual Results
5	Steam Pressure	150	psig	[from Sys	tem Setup	Header	Pressure]		Energy Savings 33,559,153 MMBtu
6	Steam Temperature	370	°F	Only if Su	perheated	Steam			Cost Savings \$133,901,022
7	Feedwater Temperature	227.1	°F	[from Dia	gram Fee	dwater (p	urple)]		\$ 100,001,022
8.	Boiler Blowdown % of Feedwater	3	3 % [from System Setup Boiler Blowdown Rate			Blowdown	Rate]	<u> </u>	
9	Heat Exchanger Effectiveness % INPUT SOURCE [value between 40 and 65 allowed]						ved]		

Data Collection

13

- Customer/Site information
- System operational data and specifications for MEASUR System Setup
- Specifications (e.g., manufacturer spec sheet, engineering lab data, etc.) of measure case equipment (if applicable)

M&V – TF Input

Small Measures (<\$25k)

- Data input verification of key MEASUR inputs
 - Nameplate pictures
 - BAS/SCADA screenshots
 - LCD display pictures

Large Measures (>25k)

- Utilizes Steam Boiler M&V
- Data input verification of key MEASUR inputs
 - Nameplate pictures
 - Trend data as applicable
 - Steam flow and pressure or temperature
 - Measure specific parameters such as stack temperature, working fluid temperatures, blower speed

TF Input – Does the M&V strategy provide the right balance between M&V cost and value?

AOE Measure EULs – TF Input

- E-5152 allows exceptions to AOE EUL limited by host RUL to AOE equipment life as the EUL
 - AOE measure "remain(s) in place even if the host equipment is replaced"
- Impacts stack economizer, blowdown system, combustion controls, and water treatment
- Justification
 - Steam boiler activity to reset of the EUL is often due to a retube and measures remain
 - Measures are related to systems outside of the boiler replacement activity

E-5221 Examples

Table 1-3. Measure Life for Add-On Equipment by Host and Host Proxy

AOE Host	AOE Host Proxy*	Measure Life	Example	
AOE is typically replaced or removed from service at same time as host equipment	None	Lesser of: - EUL of AOE - RUL of Host	AOE: Anti-Sweat Heater Controls Host: Refrigerated Case	
	None	EUL of AOE	AOE: Pool Cover Host: Pool Heater	
AOE is <u>not</u> typically replaced or removed from service at same time	AOE is typically replaced or removed from service at same time as host proxy	Lesser of: · EUL of AOE · RUL of Host Proxy	AOE: Aerator Host: Water Heater Host proxy: Faucet	
as host equipment	AOE is <u>not</u> typically replaced or removed from service at same time as host proxy	EUL of AOE	AOE: Ozone Laundry Host: Water Heater Host proxy: Building System (Piping)	

TF Input – Has the working group applied acceptable exceptions to standard AOE EUL related to the host equipment?

Discussion and Affirmation

Any other TF comments or suggestions?

 Affirmation: Cal TF affirms the Steam Boiler Plant Add-On Custom Measure Package.

Next Steps

- Post TF-Affirmed CMP in Cal TF Custom Measure Library
- Solicit CPUC Staff and CPR Consultant Team Review