Pumping Systems Custom Measure Package

1

CALIFORNIA

TECHNICAL FORUM

SPENCER LIPP, PE

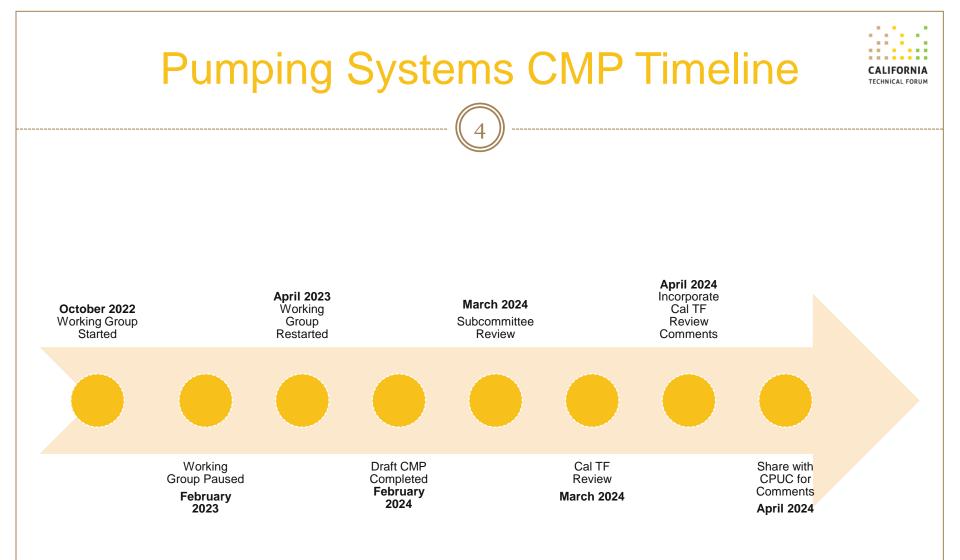
Presentation Overview

- Overview of CMP Development
- CMP Scope: Measures and MAT
- CMP Content w/ Key Discussion/Decision Points
- TF Discussion
- TF Affirmation

Pumping Systems Measure Package

Materials

- Measure Package
 - Measure Characterization
 - Primary tool:
 - × <u>DOE MEASUR</u>
 - Standard Practice Analysis
 - × DOE Shipment Data Analyzed


Hyperlinks require access to the Custom Subcommittee SharePoint site; email <u>spencer.lipp@futee.biz</u> to request access.

Group Members

- Eric Noller* (ERI)
- Armen Saiyan*† (LADWP)
- Steven Long*† (ICF)
- Chas Ehrlich*† (PG&E)
- Adan Rosillo*† (PG&E)
- Peter Davi (SCE)
- Fiela Vu (Lincus)
- Shahab Azizi (Lincus)
- Paul Ng (Lincus)
- Abhimanyu Sah (Lincus)
- Glen LaPalme[†] (TRC)

* TF member

[†] Initial working group discussions only

3/28/2024

CMP Measures

Custom Measures

Pump replacement (including right sizing)

- Clean water pump (AR) 0
- Non-Clean water pumps (NR/AR) 0
- System operational adjustments
 - Sensors and controls (AOE) 0
 - Right size through stage removal (BRO)
 - Installation of valves (AOE) 0
 - Reconfigure VFD controls (BRO)
 - Setpoint optimization (BRO)
 - Piping system reconfigurations (AOE)
 - Trim Impeller (BRO)
- Installation of VSD
 - Industrial process pumps (AOE)
 - Agriculture pumps (AOE)

Related Deemed Measures

- SWWP004 Water Pump Upgrade Clean water pumps (≤250 hp) NR and NC MATs
- SWHC008 Variable Speed Drives for a **Central Plant System**
 - Commercial building chilled and condenser water pumps
- SWWP002 VFD on Irrigation Pump
 - Well pumps (≤300 hp) and booster pumps (≤150 hp) with throttle valve
- SWWP005 Enhanced VFD on Irrigation Pump
 - Well pumps (75-600 hp) and booster pumps (75-150 hp) with requirements
- SWPR002 VFD for Glycol Pump Motor
 - Wine manufacturing system pumps (3-25 HP) SWWH015 Demand Control for Centralized
- Water Heater Recirculation Pump
 - Multifamily and commercial domestic hot water pump control
- SWWH012 Recirculation Pump Timer
 - Commercial building HVAC hot water pump controls

Measure Application Types – TF Input

6`

Category	Measure	Description	MAT
Pump Replacement	Clean water	Replacement of the pump with a more efficient clean water pump	AR
	Non-clean water	Replacement of the pump with a more efficient non-clean water pump	AR/NR
System Operational Adjustments	Sensors and controls	Additional sensors and controls to optimize the run time, pump head, and/or pump flow including on/off controls	AOE
	Right size pump (stage removal)	Removal of a pump stage to meet the current service demands of less flow and/or pressure requirements	BRO
	Installation of valves	Additional valves and control strategies to optimize run time, pump head and/or pump flow	AOE
	Reconfigure VFD controls	Adjust existing VFD controls with lower minimum speeds or activities to return to modulating VFD operation	BRO
	Setpoint optimization	Adjust setpoints in control sequences to optimize the run time, pump head, and/or pump flow	BRO
	Piping system reconfigurations	Redesigned piping system to minimize pressure drop with larger diameter, decrease pipe length, and/or replacement of fittings and bends.	AOE
	Impeller trimming	Trimmed impeller to reduce pressure losses and match the flow profile	BRO
VSD	Installation of VSDs	Installation of VSDs on a pump system to vary and match pump flow to demand.	AOE

3/28/24

Combustion Controls AOE MAT – TF Input Forma

- Review of CPUC language and definition for piping reconfigurations
 - E-4818 AOE definition
 - New equipment onto existing host that improves host efficiency or energy burden (piping reconfiguration reduces pressure/energy burden)
 - Host system operational without AOE (system is able to provide required flow with existing configuration)
 - Energy reduction occurs at the host equipment (savings occur at the pump)
 - E-4818 Page 26 "…allowing reconfiguration and modifications to systems to optimize performance…as add-on equipment, which is a reasonable classification for them."

Combustion Controls AOE MAT – TF Input FORMA

Track 1 Working Group Report

T1WG AOE Example #1 (emphasis added)

A VFD replaced a throttling value in modulating the flow in a pumping system. In the course of installing the VFD, *minor repair and replacement* of a portion of the controls and/or inverter duty motor was necessary to implement the VFD/VSD primary function. This measure *qualifies as an AOE* because it is a *component that was added on to existing equipment that still serves the load*.

T1WG AOE Example #7 (emphasis added)

An existing agricultural pump performance has degraded over time. The pump impeller, seals, and bearings can be replaced, restoring the pump to its former operating condition, although *not exceeding its previous operation*. This measure is restorative and *does not qualify as an AOE measure*.

Any TF Concerns with AOE or BRO categorizations?

- Existing conditions
 - 8 of the 10 measures are AOE or BRO
 - Clean and non-clean water pump replacement have AR MATs
- Standard practice baseline
 - Pump replacement
 - SWWP004 standard practice
 - CPUC approved values do not appear to have any documentation supporting the decision
 - Binned pumps by hp based on Hydraulic Institute (HI) product list
 - Constant speed SP is 42-74 and variable is 39-50 percentile based on product availability
 - CMP based on shipment data from the DOE regulation effort for clean water pumps
 - Non-clean water assumed to be the same as clean water pumps
 - Non-submersible vertical turbine (not in DOE) assumed to be the same as vertical turbine (in DOE)

- Clean water end suction closed couple, end suction frame mounted, inline, radially split vertical, vertical turbine submersible (VT-S)
 - DOE obtained 2014 shipment data by pump type/speed and efficiency from the Hydraulic Institute (HI) but did not differentiate constant and variable speed.
 - Working group could not obtain more recent data from HI
 - DOE included an estimate of pump sales by pump type and efficiency after the regulation would go into effect
 - Working group calculated a weighted average based on efficiency and projected 2024 sales by pump type.
 - Results in SP PEI ranging from 0.976 to 0.994
- TF Input Is this a reasonable assessment of ISP baseline?

- Vertical turbine non-submersible (VT-NS) represented by VT-S
 - PG&E pump test data from 1,472 pumps was analyzed
 - Average Overall Plant Efficiency ranges 58-62% with 4% standard deviation for all pump types

Row Labels	Average of Ideal OPE	StdDevp of Ideal OPE	Count of Pump Type
	0.61	-	1.00
Centrifugal	0.61	0.02	203.00
Mix Flow	0.61	-	3.00
Other	0.58	0.04	11.00
Propeller	0.60	0.02	16.00
Submersible	0.58	0.05	217.00
Turbine	0.61	0.03	704.00
Vertical Turbine Booster	0.62	0.05	192.00
Well	0.61	0.06	125.00
Grand Total	0.61	0.04	1,472

□ TF Input – Is the VT-NS = VT-S reasonable?

- Efficiency of clean water pumps equal to non-clean water pumps (e.g., sludge, digester)
 - CMP excludes viscous fluids such as crude oil
 - Pump design factors impacting efficiency from HI Guideline 20.3-2020 Rotodynamic Pump Efficiency Prediction
 - Specific speed
 - Surface roughness
 - Internal clearances
 - Working group concluded that pump design factors impacting design are not materially different for clean versus non-clean water pumps.
 - TF Input Is assumption of similar efficiencies for clean and nonclean reasonable?

Eligible Products and Program Exclusion 13 13 Eligibility Exclusions • All Residential and Non-Residential sectors of any vintage • Transport of crude oil or other similarly viscous fluid • System operational • System operational

- Any climate zone
- Limited to pump types analyzed for Standard Practice

- System operational adjustments
 - Current system not meeting the needs as perceived by the customer
- VSD/Controls
 - New wastewater treatment pumps at municipal facilities
 - Existing and inoperable VSDs

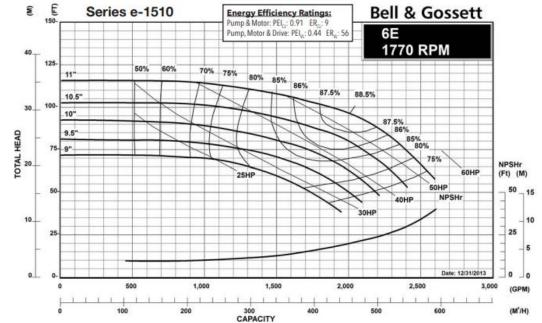
Primary Calculation Tool

• DOE MEASUR

- Updated and maintained version of the DOE Pump System Assessment Tool
- Submodules and calculators incorporated into MEASUR assessment to calculate savings for most measures

Modification Name	New Pump and Motor
Implementation Costs	\$
□ Install VFD	
Install More Efficient Drive	
✓ Install More Efficient Pump	
Baseline Pump Type	Modification Pump Type
Vertical Turbine	End Suction ANSI/API
	Modification 87.52 % Pump Efficiency Known Efficiency
	ow rate and selected pump type. Click "Known Efficiency" to use the efficiency calculated by your system setup.
Reduce System Flow Rate	
Baseline Flow Rate	Modification Flow Rate
	Modification Flow Rate
Baseline Flow Rate	
Baseline Flow Rate 1,500 gpm	
Baseline Flow Rate 1,500 gpm ☑ Reduce System Head Requirement	2000 gpm
Baseline Flow Rate 1,500 gpm Reduce System Head Requirement Baseline Head	2000 gpm Modification Head 409.99 17
Baseline Flow Rate 1,500 gpm Reduce System Head Requirement Baseline Head 410 ft	2000 gpm Modification Head 409.99 17
Baseline Flow Rate 1,500 gpm Reduce System Head Requirement Baseline Head 410 ft Adjust Operational Data	2000 gpm Modification Head 409.99 [ℓ] Calculate Head
Baseline Flow Rate 1,500 gpm Reduce System Head Requirement Baseline Head 410 ft Adjust Operational Data Baseline Cost	2000 gpm Modification Head 409.99 n Calculate Head Modification Cost

Submodules Used


- Install more efficient pump
 Input or default
- Reduce system flow rate
 - 🗙 Input
- Reduce system head
 - × Input or pump head calculator
- Adjust operational data
 - × Input
- Install VFD
 - × Input with calculator options

Data Collection

15

- Customer/Site information
- Pump and motor specifications
- System operational data examples to set up MEASUR
 - Head
 - Suction pressure
 - Discharge pressure
 - Flow
- Pump curve

3/28/2024

M&V – TF Input

Small Measures (<\$25k or 250,000 kWh)

- Data input verification of key MEASUR inputs
 - Nameplate pictures
 - Operating hours from utility meter, customer data system, or customer estimate
 - Pump flow rate from customer data system, or customer estimate

Large Measures (>25k or 250,000 kWh)

- Data input verification of key MEASUR inputs
 - Nameplate pictures
 - Trend data as applicable
 - True RMS power or flow and pressure
 - Flow (when impacted)
 - Discharge/Inlet pressure (when impacted)

TF Input – Does the M&V strategy provide the right balance between M&V cost and value?

AOE Measure EULs – TF Input

17

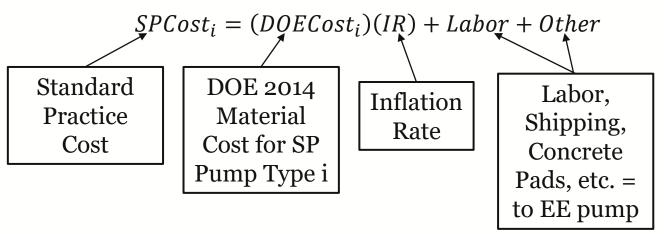
3/28/2024

- E-5152 allows exceptions to AOE EUL limited by host RUL to AOE equipment life as the EUL
 - AOE measure "remain(s) in place even if the host equipment is replaced"
- Impacts piping system reconfigurations
- Justification
 - Host equipment is pump and motor combination
 - Piping system configurations are typically not modified for pump replacements

E-5221 Examples

Table 1-3. Measure Life for Add-On Equipment by Host and Host Proxy

AOE Host	AOE Host Proxy*	Measure Life	Example
AOE is typically replaced or removed from service at same time as host equipment	None	Lesser of: · EUL of AOE · RUL of Host	AOE: Anti-Sweat Heater Controls Host: Refrigerated Case
	None	EUL of AOE	AOE: Pool Cover Host: Pool Heater
AOE is <u>not</u> typically replaced or removed from	AOE is typically replaced or removed	Lesser of: · EUL of AOE	AOE: Aerator Host: Water Heater
	from service at same time as host proxy	 RUL of Host Proxy 	Host proxy: Faucet


TF Input – Has the working group applied acceptable exceptions to standard AOE EUL related to the host equipment?

Standard Practice Cost – TF Input

18

- Working group worked with Hydraulic Institute on costs
- Hydraulic Institute advised best data was DOE Regulation

Is the scaled SP cost appropriate?

Discussion and Affirmation

19

Any other TF comments or suggestions?

• Affirmation: Cal TF affirms the Pumping Systems Custom Measure Package.

- Post TF-Affirmed CMP in Cal TF Custom Measure Library
- Solicit CPUC Staff and CPR Consultant Team Review

