Measure Savings Guidance: Subcommittee Meeting #1

CALIFORNIA

TECHNICAL FORUM

AYAD AL-SHAIKH CHAU NGUYEN JENNIFER HOLMES JUNE 25, 2020

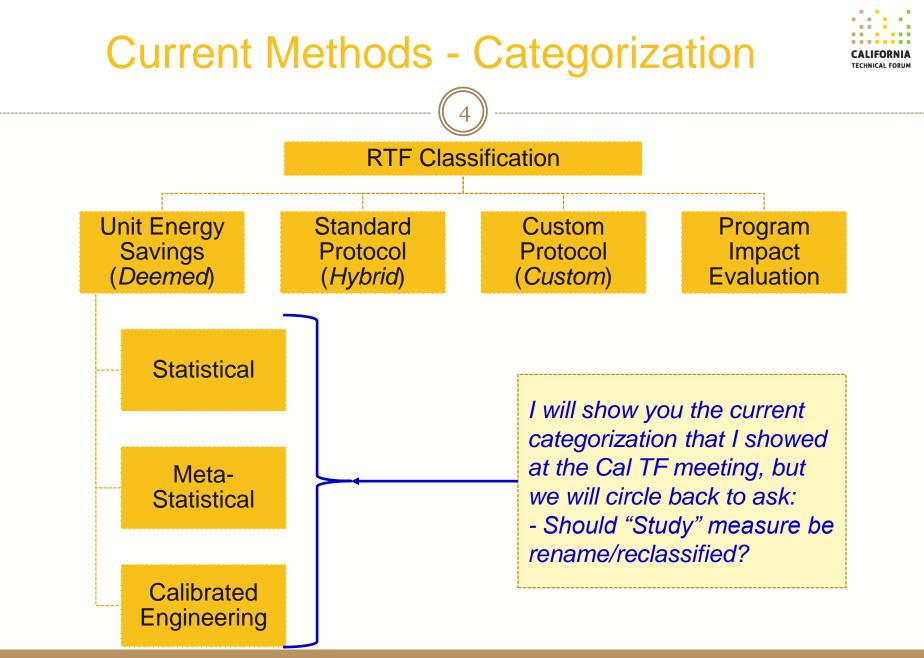
Goal

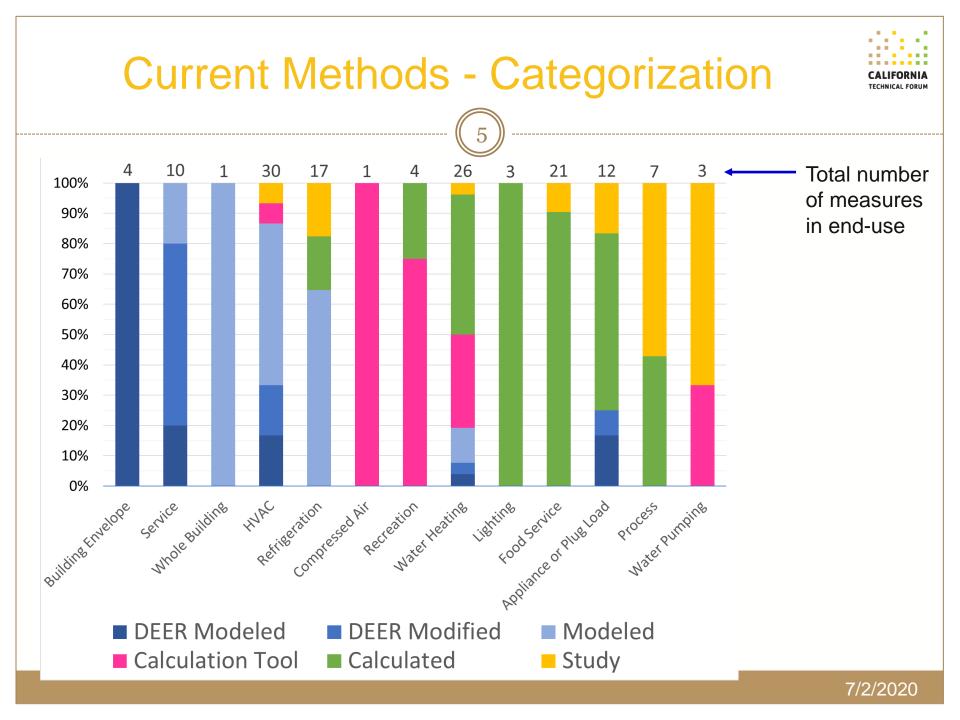
Create best practice guidelines and templates for developing deemed savings

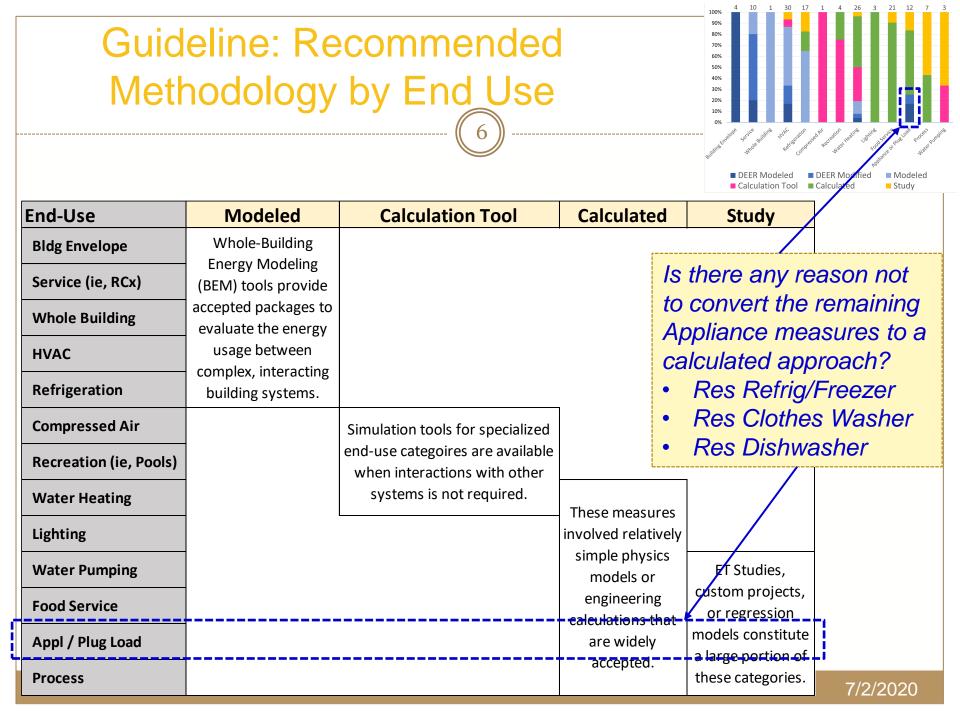
Value

- Facilitate the consistency of methods by end use
- Ensure savings calculations are transparent and reproducible
- Provide measure developers with trade-offs associated with each method to ensure accuracy and cost-efficiency

Next Steps


7/2/2020


General Outline


3

- Methodology
 - Categorization
 - Interactive Effects
 - Consistency
 - Simplifications (Examples)
- Documentation
 - Inputs and Outputs
 - Sensitive Variables
 - Data Collection
 - Permutation Number
- High Impact Measures

7/2/2020

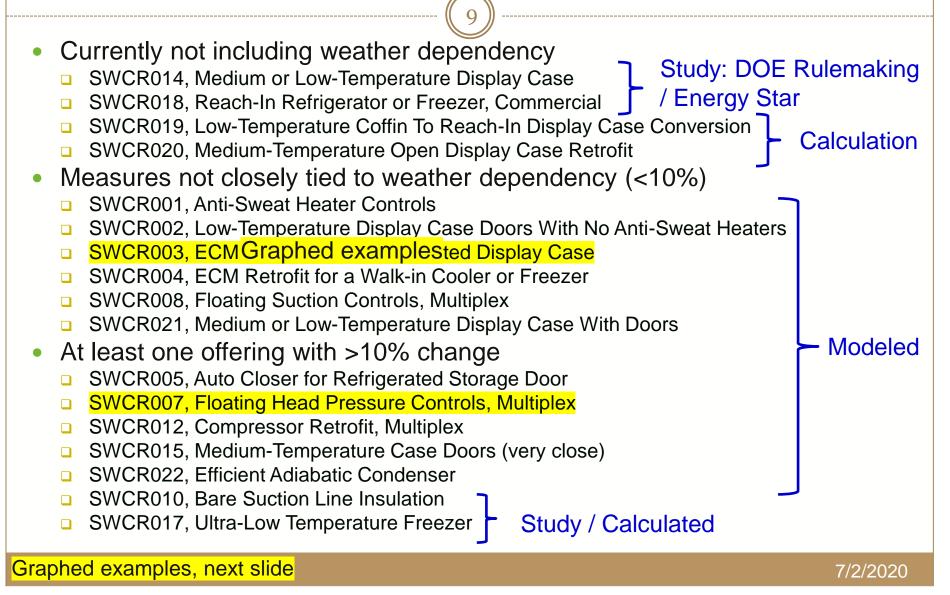
Guideline: Apply Interactive Effects Consistently

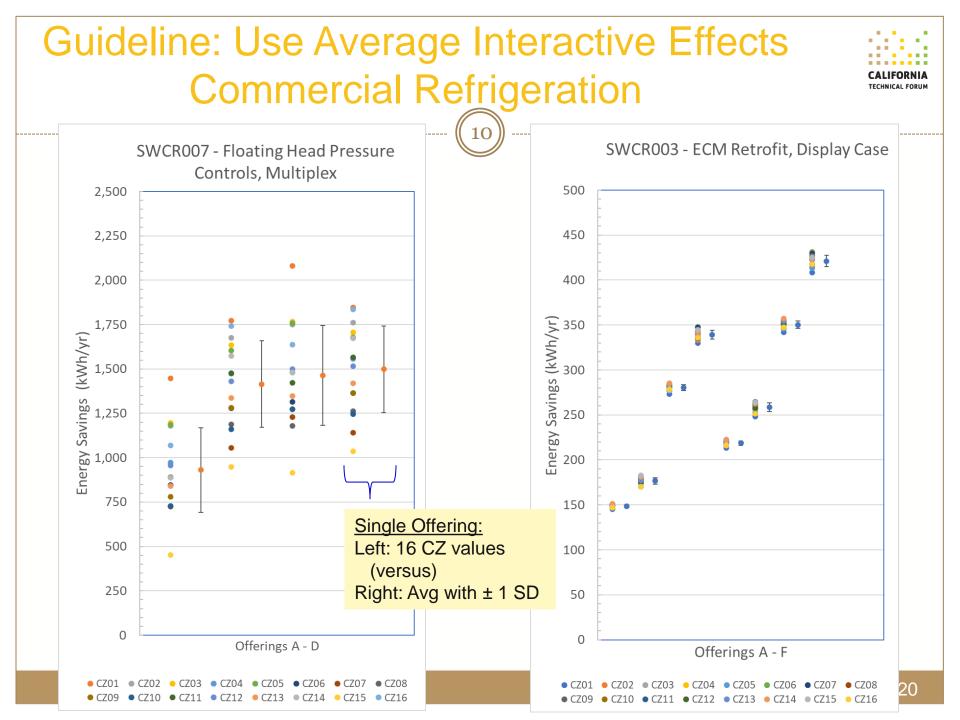
[[2]2()2(

- Apply interactive effects when significant
 - Though Building Energy Modeling (BES)
 - Some cases may allow for a simplified approach
 - Through Interactive Effects tables
 - RTF uses a 10% rule to signify if a change is significant.
 - Can a table be used to help developers (ie, part of a two-step process)?
 - Related issue regarding interactions between measures.

End-Use	Approach						
Bldg Envelope							
Service (ie, RCx)							
Whole Building	Yes - through BEM						
HVAC							
Refrigeration	Yes - through BEM / Simplified						
Compressed Air	No						
Recreation (ie, Pools)	No						
Water Heating	No						
Lighting	Yes - through IE table / Simplified						
Water Pumping	No						
Food Service	No - (may be changing)						
Appl / Plug Load	Yes - through IE table / Simplified						
Process	No						
	7/2/2020						

Interactive Effects: Simplification Use Cases to Consider




- When other calculation inputs have large errors
 - Consider applying an average interactive effect value
 - Not climate zone specific interactive effects
- Modeled Results
 - Commercial Refrigeration
- Using the Interactive Effects table
 Lighting
- Water Heating Flow Restrictors

- These are examples of where simplification could apply.
- Question: Do we want to try to define when we should simplify?

Guideline: Use Average Interactive Effects Commercial Refrigeration

Guideline: Use Average Interactive Effects Lighting

- Interactive Effects Factors
 - Shows 1 standard deviation calculated across the 16 climate zones
- Hours of Operation
 - Shows 1 standard deviation calculated across the DEER2016 light logger data set
 - Measured at the Area Type (subset of Building Type)

Effect on Savings When Interactive Effect (IE) and Operating Hours Vary by 1 Standard Deviation SWLG009-01. EPr. Com-Iltg-Hardwired 25 +40% Jnit Energy Savings (kWh/yr) 20 1.12 **—** 1.07 1,300 15 1.01 10 -40% 5 0 **IE Ratio Operating Hours** (kWh/kWh) (hrs/yr)

Lighting Analysis – Operating Hours

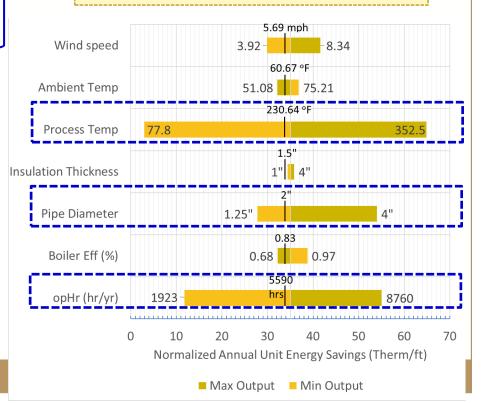
- Light level logger data from Small Commercial Contract Group evaluation report (SCCG 2010) – available on DEEResources.com.
 - Data presented for each Building Type, Activity Area, Schedule Type and Site:
 - × As hourly averages for each day-type (ie, weekday, weekend, holiday).
 - Calculated standard deviation across day-types for a specific Building Type, Activity Area, and Schedule Type
 - Combined standard errors to get the standard deviation for an Activity Area.
 - Combined standard errors of Activity Areas to get standard deviation for a Building Type.

							Data from	Activity /	Area Sched	ules tab:							
Monitore	ed Data Activity	Area	a Lightin	g Hours	of Use		Sched:	0	Sched:	1	Sched:	2					
Building	Activity			Hrs/yr	r i	ActArea	Hrs/sched		Hrs/sched		Hrs/sched		Number o	of Loggers	Lighting	fraction by	ActArea
Туре	Area		LF			Fraction	LF		LF		LF		LF		LF	CFL	HB
EPr	Classroom		1133	= 1047	+ 86 + 0	56%	1047		86		0		215		0.922	0.067	0.000
	Monitored Data	a	Da	ays	Lighting		- [_									
DayType	Approx.Sites	- Sun	m N 🔻 /S	ched 🔻	Hrs/day	 Hrs/sch 	▼ TotHrs/sc	h 🔻 🔽	HR00 - H	IR01 💌	= Sum of logger data for each HR / 100 / Sum N						
SatSun		7	13	72	* 0.7	= 47			0.009	0.008	_		,		, -		
Weekday		7	35	188	5	996	1047		0.008	0.007	= 500	n of logg	ger data for	each HR	/ 100 / รม	m of weig	ht
Holiday		1	1	7	0.6	4			0.011	0.011	541	11 01 10 55		cuenting	100, 54		

Guideline: D			easure					
Case Values CALIFORN TECHNICAL FOR								
	(13)							
Whole Building Energy Modeling (BEM)	Calculation Tool	Calculated	Study					
Follow Measure Characterizaton Template.*								
	Include base and measure	e case energy usage.						
Follow Modeled Measure	Document inputs.	Document inputs.	Document how the study					
Documentation Template ** :		Document whether	applies to the measure.					
- Document base and measure		interactive effects are						
case usage before weighting		applied.						
and after weighting.								
- Document inputs.								
- Document hourly results.								
- Document of how savings are								
normalized.								
- Document post-processing.								

* Measure Characterization Template should be followed to guide developers to that documentation is created and presented consistently.
** Modeled Measure Documentation Template provides additional guidance specifically for modeled measures.

Guideline: Document Sensitive Variables for Each Measure



- Document sensitive parameters
- Why
 - Understand which permutations are more cost effective
 - Goal: Rehabilitate sunset measures and provide easy insight for implementers
 - Clearly identify evaluation variables to provide smoother feedback to improve measures

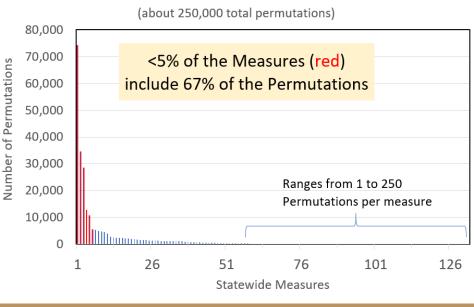
Example: Pipe Insulation

- Basic Calculations: $Savings = \frac{(Q_{base} Q_{meas})*opHr}{Boiler Eff} * length$
- Heat Loss, Q, is dependent upon:
 - ▼ Wind Speed
 - Ambient Temperature
 - Process Temperature
 - Insulation Thickness
 - 🗴 Pipe Diameter

- What is the best way to document sensitive variables (list, visually, etc)?
- Is there a systematic way to evaluate risk?

Guideline: Program Data Collection

- Identify which inputs should be collected through programs so that savings can be refined later
 - Sensitive variables that affect impacts should be well documented.
 - These should include not just savings, but also cost and life.
- Impose a "Sunset" date to reevaluate
 - When does it make sense to include Program Data Collection?
 - Ex: New measures, accelerated replacement measures, add-on equipment/to-code, etc.


Guideline: Permutation Number

16

7/2/2020

- If permutations vary by less than 10%, collapse them
 - Avoid false precision
- Four factors dramatically effect the number of permutations
 - 1. Building Type
 - 2. Climate Zone
 - 3. Delivery Type
 - 4. Offering
 - Vintage (in the future)
- When and how should permutations be collapsed?
- 10% is used by the NW RTF.
- Is this the correct value?
- Should this be 10% of savings (or should other impacts like cost/life be considered)?

Permutation Number (about 250,000 total permutations)

Guideline: High Impact Measures (HIMs)

- Understand which parameters most impact savings and cost
 - Make sure that high impact parameters have robust sources
- Mix methodologies / spend more resources
 - Smart thermostat mixes Study results with Modeled results to support and calibrate savings
- Could be important to increase permutations
 - Lighting measures (*historically*) included small wattage bin offering to improve savings accuracy
- Update triggers to be set more frequently

Additional considerations for HIMs?

Appendix Slides

18

Support for Current Methods chart

Current Methods

			(19				
Current Methods		System Interaction	Flexibility	Consistency	Transparency	Calibration*	Cost- Development	Cost- Maintenance
Whole Building Energy Modeling (BEM)	HVAC Building Envelope Service (ie BRO) Whole Building Comm Refrigeration	1	1	2	4	5	5	5
Calculation Tool	Compressed Air Recreation (ie Pools) Water Heating (ie Appliances)	5	4	1	3	4	3	1
Calculated	Lighting Water Pumping Food Service Appliance or Plug Load Process	3	1	3	1	2	3	1
Study		3	3	3	2	1	4	4

• Notes:

Key: Advantage

Disadvantage

Description of the boxes are included in the Appendix for more detail

7/2/2020

Current Methods

Г

20)

Current Methods	Primary End-Use	Advantages	Drawbacks
Whole Building	HVAC	Ability to model complex interaction of systems.	Transparency of inputs decreases due to model complexity.
Energy Modeling	Building Envelope Service (ie BRO)	Allows for flexibility to model simple and complex measures.	Transparency of model results decreases due to weighted approach.
(BEM)	Whole Building Comm Refrigeration	Promotes consistency across measures.	Weighted approach introduces additional error. Development and maintenance cost is the highest. Calibration is difficult because models represent a market average building. Calibration can be supplemented by Studies.
Calculation Tool		Ability to model a single complex system. Inputs are clear so they can be well documented. Inexpensive to create measures (once the tool is developed).	Transparency of the approach may be hidden. Limits may be placed on calculation inputs. Calibration can be supplemented by Studies.
Calculated		Fully transparent methodology and inputs. Interactive effects estimated to simulate complex interactions. Inexpensive to maintain. Development cost can vary depending upon complexity.	Complex systems are difficult to model. Additional quality control needed initially to validate. Calibration can be supplemented by Studies.
Study	Any	Leverage tested and trusted results for low cost. Provides calibrated results. Results and methods are well explained.	Applicability to the broader market must be documented. The cost can be high but varies dramatically. Scope can be limited but varies dramatically.

