Hybrid Subcommittee Meeting #5

CALIFORNIA

TECHNICAL FORUM

AYAD AL-SHAIKH CHAU NGUYEN CAMERON ASSADIAN

Hybrid Measure – Definition

- For a discrete (but growing) number of measures, document a framework for how to submit this *partially-deemed* measure
- Clarity that the submittal is expected to result in packets that:
 - Looks like a deemed measure to the customer
 - ➤ Known rebate based upon typical "normalizing unit" (ie, HP, kBTUH, etc)
 - No pre-approval required to install the measure
 - No requirement to document influence; uses a deemed Net-to-Gross value
 - Clarity on documentation that is required (up-front)
 - Provides deeper / more complete documentation than a deemed measure
- Improve customer participation in programs / customer perception
- Captures data in a structured format that could:
 - Improve inputs over time
 - Result in converting the hybrid measure to a deemed measure
- Balances:
 - Maximizing rate-payer funds by streamlining the process
 - Providing more site-level data than a typical deemed measure

Hybrid Measure – Target Measure

• Target Measure

- Installed frequently, repeatably throughout the state
- Enough clarity about the installation exists that there is acceptable trade-off between rigor and:
 - × Reliability of the measure savings amount,
 - × Persistence,
 - Double-dipping,
 - × Gaming,
 - × Etc.
- Minimum and maximum project size or incentive amount could exist (per unit)
 - Ideally streamlined approach can reduce the minimum threshold of savings for accepting a project
 - Maximum project size may exist, but this is determined on a measure by measure basis

Hybrid Process Boiler Measure

CALIFORNIA TECHNICAL FORUM

CHAU NGUYEN AYAD AL-SHAIKH

- Deemed: ³/₄ of the applications are 1/3 of the savings
- Hybrid: ¹/₄ of the applications are 2/3 of the savings

Process Boiler – Savings Calculation

- Basic Calculation: $Savings = Rated Load * LF * opHr * \left(1 \frac{Eff_{base}}{Eff_{meas}}\right)$
- Deemed: ≤ 10 MMBtu/hr
 - 1 Sensitive variable
 - Norm Unit = Rated Load
 - □ 1 Categorization
 - Boiler Type Efficiencies
- Hybrid: 10 < x < 20 MMBtu/hr
 - 3 Sensitive variables
 - × Norm Unit: Rated Load
 - Load Factor (calibrated)
 - Measure Case Efficiency
 - 1 Categorization
 - Boiler Type Base case efficiency

	HW I	HW II	Steam
Eff_{base}	.82	.82	.80
Eff _{meas}	.85	.90	.83

Process Boiler - Data Collection

Input Variable	Value	Source
Rated Load	10 – 20 MMBtu/hr	Report with measure application/form
Load Factor	0.15 – 0.69	Link to SCG Load Balance Tool
# of gas equipment	1 - ∞	
LF for each equip	0.15 – 0.69	
opHr for each equip	1,000 - 8,760	
Annual gas bill		
opHr	8,760 hrs	Calibrated in LF
Eff _{base}	0.80 – Steam 0.82 – Hot Water	Set by boiler type
Eff _{meas}	0.83 – 0.97	 Provide spec sheet FGA Record Study/engineering data for the boiler model

Hybrid Pipe Insulation Measure

CALIFORNIA TECHNICAL FORUM

CHAU NGUYEN AYAD AL-SHAIKH

CALIFORNIA TECHNICAL FORUM

Pipe Insulation - Histogram

- Deemed Measure: SWWH017 Hot Water Pipe Insulation, NonRes
 - Installation of 1" insulation to bare hot water pipe

- Deemed: 83% of applications are 35% of the savings
- Hybrid: 17% of the applications are 65% of the savings
- Other Elements: degraded insulation, other liquid?

Pipe Insulation

13

• Deemed:

- 1 Sensitive variable (Norm Unit = length)
- □ 3 Categorizations
 - Location (Pipe location + CZ) Wind speed
 - Boiler Type Process Temp + Boiler Eff
 - Pipe Size Average Pipe diameter
- 1 Additional documentation
 - Operating hours
- Hybrid:
 - 4 Sensitive variables
 - × Length
 - × Pipe diameter
 - Operating hours
 - × Process/Fluid Temperature
 - 1 Categorization
 - Pipe Location Wind speed

Deemed	HW	Low Steam	Med Steam
Process Temp	136	242	294
Eff _{meas}	83.5%	80.7%	82.5%

5/21/2020

Hybrid Chiller Measure

CALIFORNIA

TECHNICAL FORUM

CAMERON ASSADIAN BRYAN BOYCE AYAD AL-SHAIKH

Hybrid Chiller – Histogram

15

5/21/2020

• Deemed Measures:

SWHC020 Air Cooled Chiller and SWHC005 Water Cooled Chiller

- Normal Replacement (NR) of Air-Cooled Screw Chiller (Const speed -> Const speed)
- NR of Water-Cooled Centrifugal Chiller and Water-Cooled Screw Chiller (Var speed -> Var speed)

Hybrid Chiller – Measure Breakdown

16

Measure continuum

Questions

- □ Is this opportunity large enough (repeatable) to be considered Hybrid?
- Are the savings significant enough to encourage these stranded opportunities?

IOU claims data – 2019, Q1-Q4 Custom and Deemed

5/21/2020

CALIFORNIA TECHNICAL FORUM

Hybrid Chiller – Measure Breakdown

- Basic Calculation: *DEER2020_Chiller_Workbook* CPUC Calculator discussed later in the presentation (included in appendix)
- Deemed: MAT is Normal Replacement (NR)
 - One for One replacement
 - 2 Categorizations
 - ✗ Efficiency Tier
 - Capacity
- Hybrid: MAT is Accelerated Replacement (AR)
 - One for One replacement
 - 3 Sensitive Variables
 - × Efficiency Tier
 - Capacity
 - Baseline Efficiency (Full Load and Part Load)
 - Tbd if we use just standard existing efficiency (or in-field EER)

Hybrid Chiller – Workbook Iterations

- Ran iterations for a variety of parameter combinations using the CPUC calculator
- Parameters included:
 - Program Administrator (PA): SCE
 - Climate Zone (CZ): 9
 - Measure Application Type (MAT): AR
 - Chiller Type: Water Cooled Variable Centrifugal
 - **Capacity (tons)**: 200, 700
 - **kW/ton/IPLV**: 0.571 / 0.360, 0.526 / 0.342
 - Existing Chiller Manufacture Date: Dependent on Vintage
 - Building Type: Office Large, Health/Medical - Hospital, Education – University
 - Vintage: old, ex
 - Non-standard rating: No
 - Lead Chiller: No
 - Square Footage: Dependent on Building Type

Chiller Information			Puilding Information			
Canacity (tons)			building information			
capacity (tons)	kW/ton	IPLV	Building Type	Vintage		
200	0.571	0.360	Large Office	old		
200	0.571	0.360	Large Office	ex		
700	0.526	0.342	Large Office	old		
700	0.526	0.342	Large Office	ex		
200	0.571	0.360	Health/Medical - Hospital	old		
200	0.571	0.360	Health/Medical - Hospital	ex		
700	0.526	0.342	Health/Medical - Hospital	old		
700	0.526	0.342	Health/Medical - Hospital	ex		
200	0.571	0.360	Education -University	old		
200	0.571	0.360	Education -University	ex		
700	0.526	0.342	Education -University	old		
700	0.526	0.342	Education -University	ex		

Hybrid Chiller – Workbook Iterations

Results:

Chiller Information		Building Information		Above		Customer/Above		Percent Difference		Perce		Percent D	ercent Difference	
Capacity			Building information		Code/Standard		Existing Savings		Above Existing (%)		READI		(%)	
(tons)	kW/ton	IPLV	Building Type	Vintage	kWh/ton	kW/ton	kWh/ton	kW/ton	kWh/ton	kW/ton	kWh/ton	kW/ton	kWh/ton	kW/ton
200	0.571	0.360	Large Office	old	36.57	0.0153	85.13	0.0356	133%	133%	36.30	0.0152	0.7%	0.5%
200	0.571	0.360	Large Office	ex	33.46	0.0114	77.90	0.0266	133%	133%	33.2	0.0114	0.8%	0.4%
700	0.526	0.342	Large Office	old	33.71	0.0141	110.84	0.0463	229%	229%	33.4	0.014	0.9%	0.6%
700	0.526	0.342	Large Office	ex	30.85	0.0105	101.43	0.0347	229%	229%	30.6	0.0105	0.8%	0.5%
200	0.571	0.360	Health/Medical - Hospital	old	28.67	0.0156	66.74	0.0364	133%	133%	28.4	0.0155	0.9%	0.9%
200	0.571	0.360	Health/Medical - Hospital	ex	21.47	0.0133	50.00	0.0310	133%	133%	21.3	0.0132	0.8%	0.9%
700	0.526	0.342	Health/Medical - Hospital	old	26.43	0.0144	86.90	0.0474	229%	229%	26.2	0.0143	0.9%	0.9%
700	0.526	0.342	Health/Medical - Hospital	ex	19.80	0.0123	65.10	0.0404	229%	229%	19.6	0.0122	1.0%	0.7%
200	0.571	0.360	Education -University	old	35.84	0.0323	83.44	0.0751	133%	133%	35.6	0.032	0.7%	0.9%
200	0.571	0.360	Education -University	ex	29.11	0.0304	67.77	0.0709	133%	133%	28.9	0.0302	0.7%	0.8%
700	0.526	0.342	Education -University	old	33.04	0.0298	108.64	0.0978	229%	229%	32.8	0.0295	0.7%	0.9%
700	0.526	0.342	Education -University	ex	26.83	0.0281	88.23	0.0923	229%	229%	26.6	0.0278	0.9%	1.0%

• Two changes:

- Constant Speed -> Variable Speed
- DEER existing efficiencies used:

Chiller Size (tons)	Vintage	Existing Chiller kW/ton	Existing Chiller IPLV
200	Old	0.926	N/A
200	Ex	0.634	0.596
700	Old	0.926	N/A
700	Ex	0.577	0.550

Percent Difference between "Above Code/Standard Practice Savings" and "Customer/Above Existing Savings"

> Percent Difference between READI data and "Above Code/Standard Practice Savings"

5/21/2020

Hybrid Chiller – Workbook Iterations

20

• Conclusions:

- Above Code/Standard Practice Savings were approximately equal to the READI data
 - This calculator is producing the same values that we use in our Deemed statewide measures
 - Note Deemed values come from READI
- Accelerated Replacement savings (lower existing efficiency / constant->variable speed) significantly improve savings

Chiller	Information	Percent Differen	ce Above Existing %)	Questions:
kW/ton	IPLV	kWh/ton	kW/ton	Can we get in-field EER
0.571	0.360	133%	133%	measurements to improve more?
0.526	0.342	229%	229%	-

× Percent increase was independent of capacity, building type, or vintage

Next

- Run other cases: Over-ride base case efficiency, Lead chiller, Constant speed base case, Extended hours
- Check TRC:
 - Savings increase, but AR will use a first baseline full measures cost (rather than incremental measure cost)

- Additional activities for existing measures
 Understand TRC implications
- Are there other examples that we want to explore right away
 - Lighting
 - RCx
 - Ag Pump Overhauls
- Complete a Draft Guidance Document on the Hybrid measures
 - Allow for clearer review of the concept
- Next meeting Planned for about 3 weeks

Chiller Calc Tool Back-up

CPUC Calculator – General Information					
General Project Information:					
Program Administrator:	SDG				
Climate Zone:	7				
Measure Application Type:	Normal Replacement (NR)				

- This is where the Program Administrator (PA), Climate Zone (CTZ) and Measure Application Type (MAT) are inputted
- PA is only used in the calculations if the building vintage "Existing" is selected
- Otherwise PA is only descriptive

CPUC Calculator – Chiller Information

 Chiller Type, Capacity, Full Load Efficiency and IPLV are specified in this section

- Non-standard rating conditions may be entered if the conditions are different from those used in the DEER simulations
- Standard rating conditions used in the DEER simulations:
 - Entering chilled water temperature: 54°F
 - Leaving chilled water temperature: 44°F
 - Entering condenser temperature: 85°F (water-cooled), 95°F (air-cooled)
- There is also an option to select the "lead chiller"
 - First chiller to operate
 - Highest full load operating hours
 - Only takes place in a central plant with multiple chillers

Hybrid Chiller

CPUC Calculator – Building Information

Building(s) Information			Ref Runs
Building Type	Vintage	Square Footage	Measure/Code Lower Boun
Office - Large	Recent	340,000	WtrCldCentChlr-Conv-0.748
Lodging - Hotel	Exisiting	300,000	WtrCldCentChlr-Conv-0.748

CALIFORNIA TECHNICAL FORUM

CPUC Calculator – Building Information

 Up to 10 different building information can be entered including DEER building type, DEER vintage and floor area

- Savings results are generated by weighting results for each building type by the user entered floor area
- If a New vintage is included, this implies the MAT is "Capacity Expansion"
- "Extended Hours" building type is only utilized in custom programs
- Savings are calculated per ton of capacity