Ex Ante Development Guidelines – What's Missing?

ANNETTE BEITEL JULY 23, 2015

Sources of Ex Ante Development Guidelines

2

- IOU workpaper development guidelines
- Ex ante measure development subcommittee discussions to date

Question for the TF: What is missing?

IOU Workpaper Template and Guidelines Content

Definitions

- Terms (NTG, EUL, etc.)
- Delivery channels (Downstream, Upstream, etc.)
- Installation type (RET, ROB, REA, NEW)

Common workpaper data sources

- ET studies
- EM&V studies
- Other jurisdictions
- Manufacturer information

Instructions

- Key workpaper sections
- Documentation of information
- Guidance on significant figures for numeric values

Cal TF Staff Suggestions for Additional Guidelines Content

- Pre-Work: Literature Review/Other TRM Review/Due diligence
 - Consideration/discussion of all sources of "available information"
 - Disclose all, indicate which prior research will be used
- Evaluating Available Information
 - <u>Validity of Research Approach</u>: Sample size, statistical significance, research methodology (e.g. Quasi-experimental; RCT)
 - Applicability of Data to Planned Implementation: Date and location of study, technologies considered, sample size vs. expected customer population.
- Evaluating whether more information is needed Interim approval
 - Data collection during Implementation/early EM&V
 - Modeled results validated through data collection
- Assess Appropriate Level of Complexity for Measure
 - Number of building combinations, vintages, locations
 - Merits of algorithms vs. modeling
 - What information really drives outcome? (savings; TRC calculation)
 - Spend more time/money evaluating parameters that impact outcome

Ex Ante Measure Development Subcommittee

- Create different standards for statistical rigor, complexity, and accuracy depending on portfolio impact of measure
 - Higher impact measures warrant greater complexity in pursuit of greater accuracy
 - Calibrated building models (higher cost)
 - Calibrated engineering equations with statistically rigorous inputs
 - Lower impact measures require less complexity
 - Engineering equations with documented inputs
 - Measure impact may change over time, so assess regularly (annually) portfolio impact.
- Establish duration of measure approval based on quality of information and measure impact: Sunset date for all measures
 - Low quality of information, low statistical rigor warrants 1-year short-term approval
 - Low impact measures may not warrant investing in better information
 - High impact measures warrant better information for longer-term approval

Ex Ante Measure Development Subcommittee

Implementation considerations

- Cost of workpaper development, both initial development and maintenance
- Cost of processing measure data internally for reporting purposes
- Risk of human error due to number of measure combinations, frequency of updates, etc.

Other issues to address

- Appropriate application of interactive effects
- Definition/consideration of bias
- Best practices for measure documentation
- Clear model validation guidelines consider EnergyPlus criteria for new modules?
- Role of stakeholder input/"best professional judgment"
- Baseline justification
- Simplifying "Rules of Thumb"

Question for the TF

What is missing?