Commercial Refrigeration Subcommittee Meeting #3

AYAD AL-SHAIKH AUGUST 2017

Agenda

- Materials:
 - □ Com Refrig, Sub Comm Mtg 3 − r2.xls
 - Technology Summary 1.0 Comm Refrig r3.2.xls
- Miscellaneous
 - Missing savings values
 - Email on Good / Mixed / Bad News
 - x 1.04, Auto Door Closer − no modelled savings for CZ07
 - Averaged from other climate zones Agreement (AS/SCE)
 - 1.07, Night Covers DEER savings vary by:
 - Climate Zone
 - × PA
- Refrigeration Controls Measure Structure
- EC Motor Retrofit Measure Structure
- Display Cases

Commercial Refrigeration

- 4
- Looking for agreement on:
 - Process Controls
 - Recommendation: Remove process refrigeration controls measures and reconsider these for the Process Category.
 - Measure Break-Up
 - Recommendation: Create separate measures for FHP-Multiplex, Suction-Multiplex, FHP-Single Compressor.
 - Impact due to Climate Zone is significant.
 - Recommendation: Savings vary by 26-50% for kWh and 20-30% for therms. DEER presents these modeled values already, so Statewide implementation is straightforward.
 - Impact due to Building Vintage is significant.
 - Recommendation: To capture savings accurately, Vintage should be included if it is the best representation of the sensitive variables that are truly driving savings variation.
 - Control Strategy Averaging
 - ▼ Recommendation: Use the distinction of control strategy. Do not average savings from multiple types.

Refrigeration Controls SCE17RN023.0

Floating Head Pressure:

- □ RF-31355: **Floating head pressure** control for comm. air-cooled, multiplex refrigeration systems.
 - ▼ DEER ID: D03-221: Fixed SCT = 70°F
 - ▼ DEER ID: D03-223: Control SCT to ambient + 12°F TD, 70°F min, backflood setpoint of 68°F
 - ▼ DEER ID: D03-225: Control SCT to ambient + 12°F TD, 70°F min, backflood setpoint of 68°F, variable-speed fan control
- □ RF-41488: **Floating head pressure** control for comm. evap-cooled, multiplex refrigeration systems.
 - DEER ID: D03-222: Fixed SCT = 70°F
 - DEER ID: D03-224: Control SCT to wetbulb + 17°F TD, 70°F min, backflood setpoint of 68°F
 - ➤ DEER ID: D03-226: Control SCT to wetbulb + 17°F TD, 70°F min, backflood setpoint of 68°F, variable-speed fan control
- □ RF-40395: Floating head pressure control for process, evap-cooled refrigeration systems.
 - ▼ DEER ID: D03-307: Fixed SCT = 70°F, backflood setpoint of 68°F
 - ▼ DEER ID: D03-308: Control SCT to wetbulb + 9°F TD, 70°F min, backflood setpoint of 68°F
 - ▼ DEER ID: D03-309: Control SCT to wetbulb + 9°F TD, 70°F min, backflood setpoint of 68°F, var-speed fan control

Suction Control

- RF-51222: DEER ID: D03-220: Multiplex system, air-cooled condenser, reset SST based on worst-case demand
- RF-20965: DEER ID: D03-306: Process, Reset SST based on worst-case zone demand

Process Controls

- Recommendation: Remove process refrigeration controls measures and reconsider these for the Process Category.
- Concerns / Agreement:
 - May not get the same professional expertise reviewing measure if moved from this group.
 - Process refrigeration seems like custom rather than deemed realm.
 - Why separate? Does this mean that we want to separate refrigerated warehouse from retail stores?

- Measure Break-Up
 - Recommendation: Create separate Measures:
 - Floating Head Pressure Control, Multiplex Systems
 - Suction Control, Multiplex Systems
 - ▼ Floating Head Pressure Control, Single Compressor Systems
 - This is a structural question for the eTRM. Currently separated for PG&E, but combined for SCE.
 - Separation allows for a clearer description of the Measure.

Refrigeration Controls – Climate Zone

- Impact due to Climate Zone is significant.
 - Recommendation: Savings vary by 26-50% for kWh and 20-30% for therms. DEER presents these modeled values already, so Statewide implementation is straightforward.

Std Dev Due to Climate Zone

		PGE		SCE		SCG		PGE-vfd	
Ref	BldgType	kWh	therms	kWh	therms	kWh	therms	kWh	therms
AC, Multiplex	Gro	404	0.16	151	0.07			310	0.15
EC, Multiplex	Gro	651	0.15	277	0.06			622	0.15
Floating SST	Gro	73	0.01	43	0.01				
Process, EC FHP	Gro			89	-				
Process, SST	Gro			92	-				
(blank)	Gro					-	0.11		

Percent Difference Due to Climate Zone

		PGE		SCE		SCG		PGE-vfd	
Ref	BldgType	kWh	therms	kWh	therms	kWh	therms	kWh	therms
AC, Multiplex	Gro	41%	29%	15%	29%			19%	29%
EC, Multiplex	Gro	50%	30%	20%	25%			44%	29%
Floating SST	Gro	26%	20%	12%	20%				
Process, EC FHP	Gro			6%					
Process, SST	Gro			16%	·				
				·					

Refrigeration Controls – Climate Zone

Raw Values

BldgLoc	BldgType	BldgVint	kWh
CZ01	Gro	1975	1,818
		1985	1,836
		1996	1,502
		2003	1,039
		2007	557

BldgLoc	BldgType	kWh		
CZ01	Gro	1	1,350	

Average of Climate Zones

BldgLoc	BldgType	kWh
CZ01	Gro	1,350
CZ02	Gro	995
CZ03	Gro	1,026
CZ04	Gro	880
CZ05	Gro	1,095
CZ06	Gro	
CZ08	Gro	
CZ09	Gro	
CZ10	Gro	
CZ11	Gro	761
CZ12	Gro	852
CZ13	Gro	762
CZ14	Gro	
CZ15	Gro	
CZ16	Gro	1,054

- Average of CZ
- Standard Deviation of CZ

Ref	BldgType	kWh
AC, Multiplex	Gro	404

- % Difference Due to Standard Deviation of CZ
- = 404 / (Average of CZs) = 41%

Ref	BldgType	kWh
AC, Multiplex	Gro	41%

- 10
- Impact due to Building Vintage is significant.
 - Recommendation: To capture savings accurately, Vintage should be included if it is the best representation of the sensitive variables that are truly driving savings variation.
 - What does change between Vintage Prototype models?
 - Note: DEER does not represent values with vintages directly in READi; these would need to be re-run through MASControl to make the measure available statewide.

Average Difference Across Climate Zones

	PGE		PGE-vfd	
	kWh	therms	kWh	therms
AC, Multiplex	40%	21%	12%	20%
EC, Multiplex	54%	23%	47%	22%
Floating SST	28%	11%	#DIV/0!	#DIV/0!

Raw Values

BldgLoc	BldgType	BldgVint	kWh	
CZ01	Gro	1975	1,818	
		1985	1,836	
		1996	1,502	
		2003	1,039	
		2007	557	

Average of Vintages

BldgLoc	BldgType	kWh
CZ01	Gro	1,350

Standard Deviation of Vintages

BldgLoc	BldgType	kWh
CZ01	Gro	548

% Difference Due to Standard Deviation of Vintages

-= 548 / 1,350 = 41%

BldgLoc	BldgType	kWh	
CZ01	Gro		41%

BldgType kWh BldgLoc Gro 41% Gro 40% CZ02 Gro CZ03 45% CZ04 Gro 41% CZ05 Gro 43% Gro CZ06 CZ08 Gro CZ09 Gro Gro CZ10 Gro 36% CZ11 CZ12 Gro 40% CZ13 Gro 36% CZ14 Gro **CZ15** Gro **CZ16** 37% Gro

Average Difference Across Climate Zones

	PGE		PGE-vfd	
	kWh	therms	kWh	therms
AC, Multiplex	40%	21%	12%	20%
EC, Multiplex	54%	23%	47%	22%
Floating SST	28%	11%	#DIV/0!	#DIV/0!

- Impact due to Building Vintage is significant.
 - Recommendation: To capture savings accurately, Vintage should be included if it is the best representation of the sensitive variables that are truly driving savings variation.
 - What are those variables?

- Impact due to Building Vintage is significant.
 - Recommendation: To capture savings accurately, Vintage should be included if it is the best representation of the sensitive variables that are truly driving savings variation.
 - What are those variables?
 - What are the differences between vintage prototype models?
 - Can information be collected effectively?
 - Any vintages preferentially used for these measure
 - See bar graph

- Impact due to Building Vintage is significant.
 - Any vintages preferentially used for these measure

- Control Strategy Averaging
 - Recommendation: Use the distinction of control strategy. Do not average savings from multiple types.

Average Savings

	w/o VFD		w/ VFD	
	kWh	therms	kWh	therms
AC, Multiplex	975	0.53	1,672	0.54
EC, Multiplex	1,305	0.49	1,419	0.25
Floating SST	283	0.06		

<u>% kWh</u>	<u>% thm</u>		
<u>Diff</u>	<u>Diff</u>		
-71%	-2%		
-9%	49%		

EC Motor Retrofits

16

EC Motor Retrofits

- Permutation Collapse due to Climate Zone
 - 1-3% for SHP baseline motors
 - Note that PSC motor baseline is not be used currently.
 - Agreed to remove?
- Permutation Collapse due to Offering
 - 7-9% for Display Cases and Walk-Ins
- Best Available Market Data for Display Case motor sizes
- Consensus on:
 - Phase 1 now
 - Phase 2 future

EC Motor Retrofit Options

- 18
- 3 Workpapers to consolidate
 - Display Case (DC) / Walk-In (WI)
 - Freezer / Cooler
 - Shaded Pole (SHP) / Permanent Split Capacitor (PSC)

EC Motor Retrofit Options

Notes:

- Variation due to Climate Zone is minimal
 - Savings = per motor
 - Std Dev = Std Dev / Ave kWh
 - ▼ Therefore, consider collapsing values

Difference i	n Unit	of	Measure	shows	an
inconsisten	cy for:	ı			

- DC/Freezer/SHP and DC/Cooler/SHP
- ★ However, 2.6 ft/DC * SCE Value = PG&E Value
- ▼ Therefore, no actual difference in savings

Description	Avg kWh	Std Dev	% Std Dev
DC/Cooler/SHP	325	3.0	1%
DC/Freezer/SHP	360	4.3	1%
WI/Cooler/SHP	467	4.7	1%
WI/Freezer/SHP	528	16.2	3%
WI/Cooler/PSC	73	0.9	1%
WI/Freezer/PSC	57	2.6	5%
DC/SHP	704	7.8	1%

EC Motor Retrofit Recommendation

- Phase 1: No savings values would change
 - The basis for savings already exists in all cases
 - Create 2 Measures for:
 - Display Case EC Motor Retrofit
 - Walk-In EC Motor Retrofit
 - Use ROB methodology from PGECOREF109 & SCE13RN011
 - Norm Unit = per motor
 - For both Display Cases and Walk-Ins
 - Add ER/(Accelerated Replacement) methodology from PGE3PREF124
 - ➤ Norm Unit = per motor
 - ▼ For Display Cases only

EC Motor Retrofit Recommendation

- Phase 2 (future):
 - Display Case and Walk-In
 - Collapse savings values
 - Still maintain all savings values for climate zone, but average results (weighted average is preferable – how?)
 - Walk-In Only
 - ▼ Methodology changed to follow PGE3PREF126
 - Norm Unit = Rated-HP (instead of "per motor")

Display Case Measures

Commercial Refrigeration

Display Case Measures

- Measures recommended as overlapping:
 - 1.02b, Anti-Sweat Heater Display Doors
 - Review PG&E comment
 - 1.16, Medium Temp Open Case Retrofit
 - Agreement to remove
- Display case options not captured in the tree?
- Is 1.17a (SCE workpaper SCE17RN028.0) the correct methodology to use for like-for-like display case replacements?

Display Case Tree

Commercial Refrigeration

	Equipment	Equipment	Sample	Operating	Temperature	Operating	Equipment
1 17	Family	Family	Equipment	Mode	Designation	Temp.	Class
1.17		Designation	Family Image	Designation			Designation
Display	Vertical Open	VOP		Remote Condensing	M (38 °F)	≥32 °F	VOP.RC.M
Cases w/ Doors	Semi vertical Open	SVO		(RC)	M (38 °F)	≥32 °F	SVO.RC.M
(SCE approach)	Horizontal Open	HZO			L (0 °F)	<32 °F	HZO.RC.L
,	Vertical Closed	VCT			M (38 °F)	≥32 °F	VCT.RC.M
	Transparent	VCI			L (0 °F)	<32 °F	VCT.RC.L
	Horizontal Closed	НСТ			L (0 °F)	<32 °F	HCT.SC.L
	Transparent	TICI	- 1		I (-15 °F)	≤-5 °F	HCT.SC.I
Source: DOE rule making [A], Table 3.2.5	Horizontal Closed Solid	HCS		Self-Contained (SC)	M (38 °F)	≥32 °F	HCS.SC.M
Commercial Refrigeration Equipment Classes Commercial Refrigeration	Pull-Down	PD	LONG.		M (38 °F)	≥32 °F	PD.SC.M