Measure Savings Estimation: Current Practices & Proposed Guidance

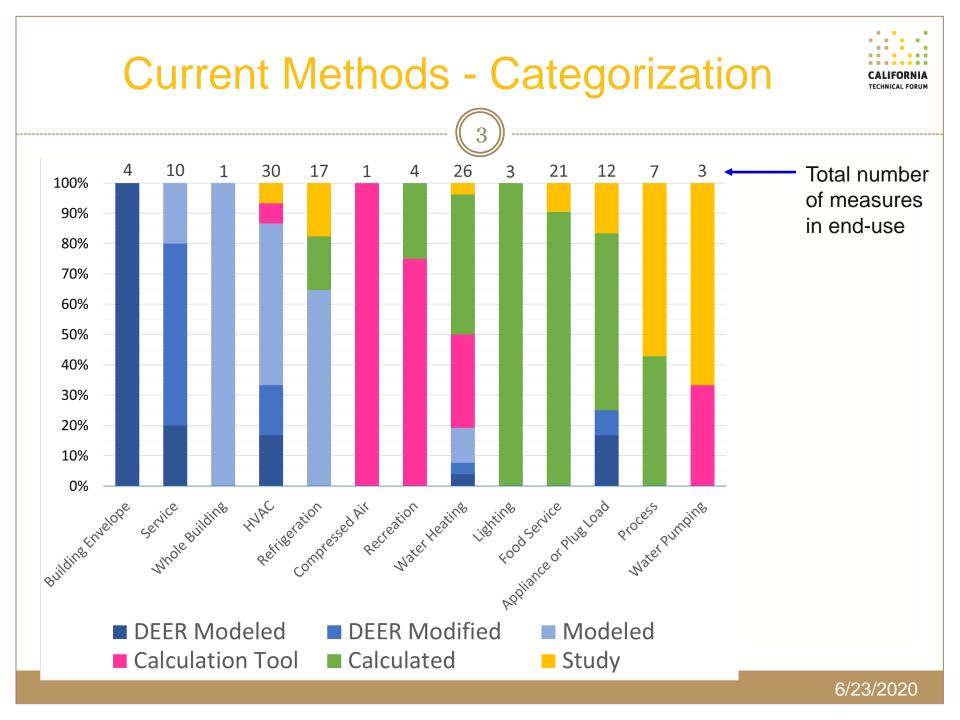
CALIFORNIA

TECHNICAL FORUM

AYAD AL-SHAIKH CHAU NGUYEN JENNIFER HOLMES JUNE 25, 2020

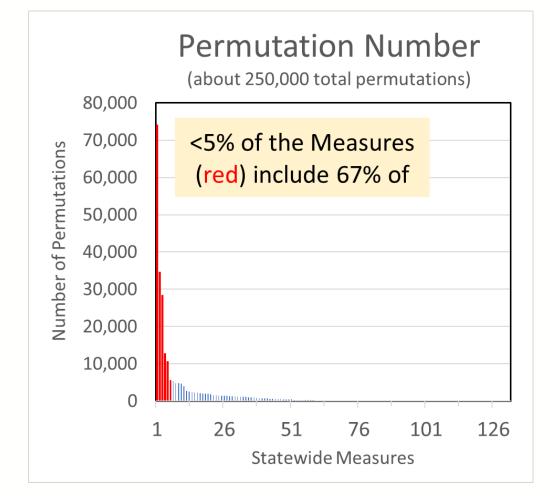
6/23/2020

Goal


- Characterize current practices for developing savings by end use
- Create best practice guidelines and templates for developing deemed savings

• Value

- Facilitate the consistency of methods by end use
- Ensure savings calculations are transparent and reproducible
- Provide measure developers with trade-offs associated with each method to ensure accuracy and cost-efficiency


Next Steps

Current Methods – Permutation Analysis

- Four factors dramatically effect the number of permutations
 - Building Types (24)
 - Climate Zones (16)
 - Delivery Types (3)
 - Offerings (varies)
 - Vintages (in the future)

Current Methods – Claims Data Analysis

 Claims data from 2018 (Q1-Q4) correlated to statewide measures.

5

 No significant correlation to calculation methodology or permutation count.

Recommended Guidelines

- 1. **Methodology:** Choose a calculation methodology that aligns with the measure end-use
- 2. **Documentation:** Document both the base case and measure case energy use
- 3. **Documentation:** Document sensitive variables for each measure
- 4. Interactive Effects: Include interactive effects consistently
- 5. Interactive Effects: Use average interactive effects versus climate zone specific values of variables have large error bands
- 6. **Permutations:** Eliminate permutations when they do not vary by more than 10% (except for HIMs)
- 7. **Program Data Collection:** Identify which inputs should be collected through programs so that savings can be refined later
- 8. High Impact Measures (HIMs): Additional considerations for HIMs

Feedback Request – Now or during the subcommittee.

Guideline 1: Recommended Methodology by End Use

■ Calculation Tool ■ Calculated ■ Stud					
End-Use	Modeled	Calculation Tool	Calculated	Study	
Bldg Envelope	Whole-Building				
Service	Energy Modeling (BEM) tools provide			Is there any	y reason not
Whole Building	accepted packages to evaluate the energy				he remaining
HVAC	usage between			Appliance i calculated	neasures to a
Refrigeration	complex, interacting building systems.				rig/Freezer
Compressed Air		Simulation tools for specialized		Res Clo	thes Washer
Recreation		end-use categoires are available when interactions with other		Res Dis	hwasher
Water Heating		systems is not required.	These measures		
Lighting			involved relatively		
Water Pumping			simple physics models or	ET Studies,	
Food Service			engineering calculations-that	custom projects, or regression	
Appl / Plug Load			are widely	models constitute	
Process			accepted	a-large portion of these categories.	6/23/2020

4 10 1

Sera de Build.

DEER Modeled

100% 90%

> 80% 70% 60% 50%

> 40% 30% 20% 10%

30 17 1 4 26

-stigedtu spesed recent use her

DEER Modified

3 21 12

Modeled

Guideline 2: Document Base and Measure							
Case Values							
Whole Building Energy Modeling (BEM)	Calculation Tool	Calculated	Study				
Follow Measure Characterizaton Template.*							
	Include base and measure	e case energy usage.					
Follow Modeled Measure	Document inputs.	Document inputs.	Document how the study				
Documentation Template ** :		Document whether	applies to the measure.				
- Document base and measure		interactive effects are					
case usage before weighting		applied.					
and after weighting.							
- Document inputs.							
- Document hourly results.							
- Document of how savings are							
normalized.							
- Document post-processing.							

* Measure Characterization Template should be followed to guide developers to that documentation is created and presented consistently.
** Modeled Measure Documentation Template provides additional guidance specifically for modeled measures.

Guideline 3: Document Sensitive Variables for Each Measure TECHNICAL FORUM Document sensitive parameters Why Feedback: Understand which permutations are more What do you think of this cost effective approach? Goal: Rehabilitate sunset measures and provide easy insight for implementers Clearly identify evaluation variables to provide smoother feedback to improve 5.69 mph -8.34 measures Wind speed 3.92 60.67 °F **Example:** Pipe Insulation 51.08 75.21 Ambient Temp 230.64 °F Basic Calculations: *Savings* = Process Temp 77.8 $\frac{(Q_{base} - Q_{meas})*opHr}{Boiler Eff} * length$ 1.5" 1" 4" Insulation Thickness Heat Loss, Q, is dependent upon: **Pipe Diameter** 1.25" 4" Wind Speed X 0.83 Ambient Temperature Boiler Eff (%) 0.68 0.97 **Process Temperature** 5590 opHr (hr/yr) 1923 8760 Insulation Thickness *Pipe Diameter* 10 20 30 60 70 0 40 50 Normalized Annual Unit Energy Savings (Therm/ft)

Max Output Min Output

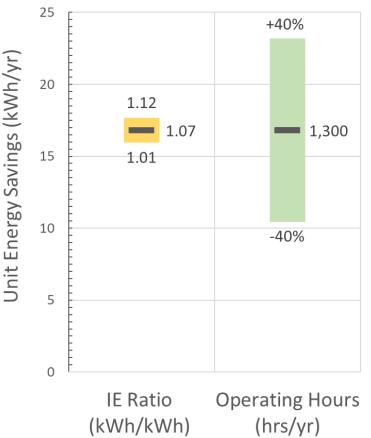
Guideline 4: Apply Interactive Effects Consistently

10

- Apply interactive effects when significant
 - Though Building Energy Modeling (BES)
 - Some cases may allow for a simplified approach
 - Through Interactive Effects tables

End-Use	Approach			
Bldg Envelope	Yes - through BES			
Service				
Whole Building				
HVAC				
Refrigeration	Yes - through BES / Simplified			
Compressed Air	No			
Recreation	No			
Water Heating	No			
Lighting	Yes - through IE table / Simplified			
Water Pumping	No			
Food Service	No - (may be changing)			
Appl / Plug Load	Yes - through IE table / Simplified			
Process	No			

Guideline 5: Use Average Interactive Effects


- When other calculation inputs have large errors
 - Consider applying an average interactive effect value
 - Not climate zone specific interactive effects
- Interactive Effects Factors
 - Shows 1 standard deviation calculated across the 16 climate zones
- Hours of Operation
 - Shows 1 standard deviation calculated across the DEER2016 light logger data set
 - Measured at the Area Type (subset of Building Type)

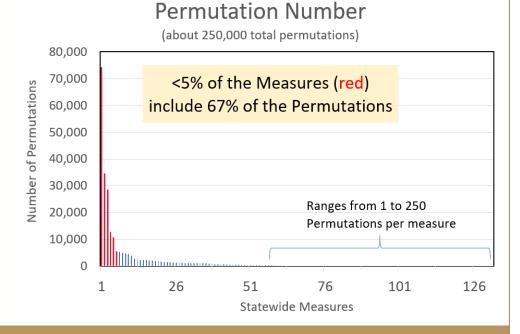
Feedback: Thoughts about simplifying IE values?

CALIFORNIA TECHNICAL FORUM

Effect on Savings When Interactive Effect (IE) and Operating Hours Vary by 1 Standard Deviation

SWLG009-01 . EPr . Com-Iltg-Hardwired

Guideline 6: Permutation Number



6/23/2020

- If permutations vary by less than 10%, collapse them
 - Avoid false precision
- Four factors dramatically effect the number of permutations
 - 1. Building Type
 - 2. Climate Zone
 - 3. Delivery Type
 - 4. Offering
 - Vintage (in the future)

Feedback:

10% is used by the NW RTF. Is this the correct value? Should this be 10% of savings (or should other impacts like cost/life be considered)?

Guideline 7: Program Data Collection

13

- Identify which inputs should be collected through programs so that savings can be refined later
 - Sensitive variables that affect impacts should be well documented.
 - These should include not just savings, but also cost and life.
- Impose a "Sunset" date to reevaluate

Feedback: When does it make sense to include Program Data Collection?

Guideline 8: High Impact Measures (HIMs)

Make sure that high impact parameters have robust sources

- Mix methodologies / spend more resources
 - Smart thermostat mixes Study results with Modeled results to support and calibrate savings
- Could be important to increase permutations
 - Lighting measures (*historically*) included small wattage bin offering to improve savings accuracy
- Update triggers to be set more frequently

Feedback: Additional considerations for HIMs?

15

Sign up for the subcommittee! (Contact Ayad Al-Shaikh)
Subcommittee will meet ~2x in next 2 weeks

Potential Subcommittee topics:

- Is there any reason not to convert the remaining Appliance measures to a calculated approach?
- What do you think of the approach to document sensitive variables?
- Thoughts about simplifying IE values?
- 10% is used by the NW RTF for collapsing permutations. Is this the correct value? Should this be 10% of savings (or should other impacts like cost/life be considered)?
- When does it make sense to include Program Data Collection?
- Additional considerations for HIMs?

Appendix Slides

16

Support for Current Methods chart

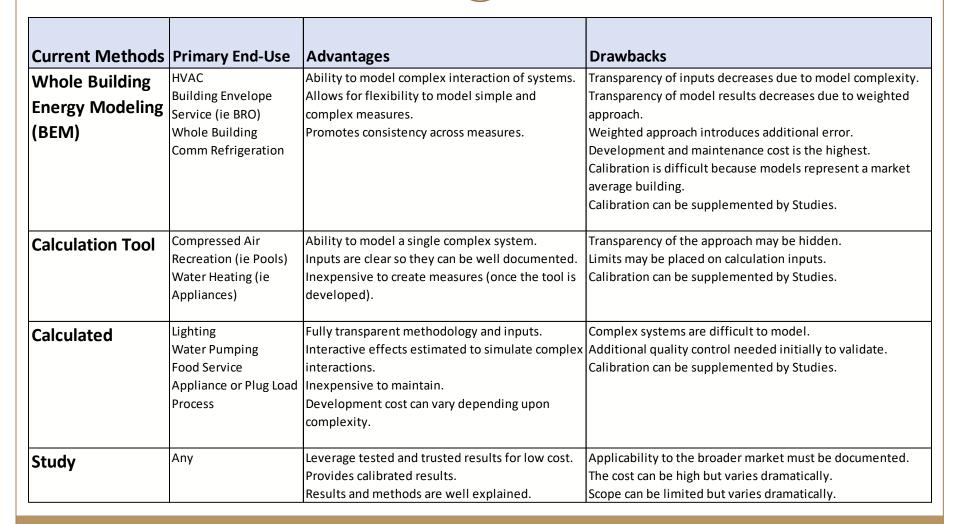
Current Methods

Current Methods	Primary End-Use	System Interaction	Flexibility	Consistency	Transparency	Calibration*	Cost- Development	Cost- Maintenance
Whole Building Energy Modeling (BEM)	HVAC Building Envelope Service (ie BRO) Whole Building Comm Refrigeration	1	1	2	4	5	5	5
Calculation Tool	Compressed Air Recreation (ie Pools) Water Heating (ie Appliances)	5	4	1	3	4	3	1
Calculated	Lighting Water Pumping Food Service Appliance or Plug Load Process	3	1	3	1	2	3	1
Study		3	3	3	2	1	4	4

• Notes:

Key: Advantage

Disadvantage


Description of the boxes are included in the Appendix for more detail

6/23/2020

Current Methods

18

