Lighting Cal TF Tier 1 Presentation

TIM MELLOCH AYAD AL-SHAIKH DECEMBER 2017

Lighting Measures for 2017

Lighting Measures for 2017

- LF, 4' Replace Lamp (in process)
- LED, Interior Downlight (in process)
- LED, Tube LED (in process)
- LED, A-Lamp (in process)
- LED, Candelabra
- LED, MR-16
- LED, PAR
- LED, R-BR
- LED, Globe
- LED, GU-24 (may drop)
- LED, Recessed Downlight (in process)

2018 Lighting – Cross Cutting Issues

- Savings methodology
 - Wattage Reduction Ratio vs Wattage Range vs Lumen Bins
 - Interactive effects
 - Hours of Use support
 - Baseline
 - Existing Conditions AB802
- Cost variation due to Climate Zone
- Permutation collapse
- Categorization

Lighting Permutation Analysis

- Decision How to include location effects for lighting?
 - Climate Zone specific permutations
 - PA-Weighted Average permutations
- Goals
 - Accuracy for Savings
 - Clarity for Evaluation
 - Simplicity to customer
 - Manage implementation difficulty
- Overview:
 - Approach
 - Benefits
 - Concerns
 - Background on Interactive Effects / Weighting Tables
 - Recommendation
- Recap decision choices: IOU vs CZ-Specific Values
 - Premise is that we need to choose one path.
- Evaluation perspective
 - Accuracy/Risk vs Tracking Difficulty table
 - Note: Risk is only applicable if Weighted Averages are different than Participation Population
- How do Interactive Effects values relate to Evaluation Table
- Understanding of existing Retail/Distributor lighting programs (IOUs)
- Recommendation / Feedback

Climate Zone vs IOU

Averaged Climate Zone

- Existing PG&E methodology
- Approach
- Benefits
- Concerns

Climate Zone Specific

- Existing SCE/SDG&E methodology
- Approach
- Benefits
- Concerns

Want feedback along the way to add to this list, so that we can make decision on how to move forward. I will come back to the list after talking through the analysis to let you add more (now or after the meeting).

Climate Zone vs IOU - Approach

Averaged Climate Zone

- Existing PG&E methodology
- Approach:
 - Stage 1:
 - IOUs would use weighted value for each CZ
 - POUs would use actual CZ
 - o OR
 - POUs would use closest IOU weighted average

Climate Zone Specific

- Existing SCE/SDG&E methodology
- Approach:
 - Stage 1:
 - CZ specific values
 - Would vary by PA due to interactive effects
 - POUs would use average interactive effect values
 - Stage 2:
 - All use average IE values

Understand where Interactive Effect table comes from.

Lighting Subcommittee 6/5/2018

Understanding Interactive Effects Build-Up Commercial Buildings

- Note: Assumed steps are in italics
- Simulated models for all combinations of: (~59,000 modelled impact values) we have 2013 commercial data, but not the latest file.
 - 11 HVAC Types
 - 8 Vintages (as of 2014)
 - 16 Climate Zones
 - 24 Building Types
 - 3 Lighting Base Technologies
- Creates HVAC Type weighted table (~35,000)
 - For example, one value that represents any HVAC Type (in a specific CZ, BT, Ltg type, Vintage)

	HVAC Weights by IOU, Vintage and Building Type														
				DXGF	PKHP	WLHP	PSZE	EHNC	GFNC	PVAV	SVAV	PVVE	SVVE	UNC	
index	IOU	Vint	Bldg	Sys 1	Sys 2	Sys 3	Sys 4	Sys 5	Sys 6	Sys 7	Sys 8	Sys 9	Sys 10	Sys 11	SUM
PGEExAsm	PGE	Ex	Asm	44%	13%	0%	4%	4%	25%	0%	0%	0%	0%	10%	100%
PGEExEPr	PGE	Ex	EPr	47%	19%	0%	1%	1%	32%	0%	0%	0%	0%	0%	100%

Not clear where HVAC Type weights come from.

Understanding Interactive Effects Build-Up Commercial Buildings

	HVAC V	HVAC Weights by IOU, Vintage and Building Type													
				DXGF	PKHP	WLHP	PSZE	EHNC	GFNC	PVAV	SVAV	PVVE	SVVE	UNC	
index	IOU	Vint	Bldg	Sys 1	Sys 2	Sys 3	Sys 4	Sys 5	Sys 6	Sys 7	Sys 8	Sys 9	Sys 10	Sys 11	SUM
PGEExAsm	PGE	Ex	Asm	44%	13%	0%	4%	4%	25%	0%	0%	0%	0%	10%	100%
PGEExEPr	PGE	Ex	EPr	47%	19%	0%	1%	1%	32%	0%	0%	0%	0%	0%	100%

code	claim_spe	description
cDDCT	1	dual duct system
cDXEH	PSZE	split or packaged direct expansion unit with electric heat
cDXGF	DXGF	split or packaged direct expansion unit with gas furnace
cDXHP	PKHP	split or packaged direct expansion unit with heat pump
cEVAP	1	evaporative cooling with separate gas furnace
cFPFC	1	four pipe fan coil
cNCEH	EHNC	no cooling with electric heat
cNCGF	GFNC	no cooling with gas furnace
cPTAC	1	packaged terminal air conditioner
cPTHP	1	packaged terminal heat pump
cPVVE	PVVE	packaged variable air volume system with electric heat
cPVVG	PVAV	packaged variable air volume system with gas furnace
cSVVE	SVVE	built-up variable air volume system with electric reheat
cSVVG	SVAV	built-up variable air volume system with gas boiler
cUnc	UNC	no HVAC (unconditioned)
cWLHP	WLHP	water loop heat pump
cWtd	1	standard weights applied to commercial HVAC types

Understanding Interactive Effects Build-Up for Commercial Buildings

- Note: Assumed steps are in italics
- Simulated models for all combinations of: (~59,000 modelled impact values) we have 2013 data, but not the latest file.
 - 11 HVAC Types
 - 8 Vintages (as of 2014)
 - 16 Climate Zones
 - 24 Building Types
 - 3 Lighting Base Technologies
- Creates HVAC Type weighted table (~35,000)
 - For example, one value that represents any HVAC Type (in a specific CZ, BT, Ltg type, Vintage)
- Creates Vintage weighted table (~9,000)
 - Basis for Climate Zone values in IE table
- Creates Climate Zone weighted table (558)
 - Basis for IOU values in IE table
- Creates Build Type weighted table (24)
 - Basis for COM values in IE table
- Adjustment due to Occupancy Sensor Scenario

Built from bldg sqft stock data that includes:

- Vintage
- Climate Zone
- Building Type
- IOU

Lighting Subcommittee

Climate Zone vs IOU - Approach

Averaged Climate Zone

- Existing PG&E methodology
- Approach:
 - Stage 1:
 - ▼ IOUs would use weighted value for each CZ (3)
 - ➤ POUs would use actual CZ (16)
 - o OR
 - POUs would use closest IOU weighted average

Climate Zone Specific

- Existing SCE/SDG&E methodology
- Approach:
 - Stage 1:
 - ▼ CZ specific values (24)
 - Would vary by PA due to interactive effects
 - POUs would use average interactive effect values
 - Stage 2:
 - ★ All use average IE values (16)

Can we consolidate CZ across IOUs

- 4,598 overlapping CZs between IOUs (removed IOU weighted averages)
- Consider Max Min difference (most conservative)

Climate Zone vs IOU - Benefits

Averaged Climate Zone

Climate Zone Specific

- Benefits:
 - Simplifies permutations in Stage 1
 - Simplifies permutations for large PAs
 - Error in other parameters (ie, HOU) likely greater than IE effects

Benefits:

- One set of values by Climate Zone for all to use (IOU/POU) in Stage 2
- More accurate savings values
 - Some IE effects like Therms can vary significantly

Climate Zone vs IOU - Concerns

Averaged Climate Zone

Climate Zone Specific

Concerns:

- Gas interactive effects look significantly different across climate zones
- CDF for Schools can vary significantly across climate zones
- Potentially more permutations (in Stage 2)

Concerns:

- More permutations (in Stage 1) until IE effects can be averaged per climate zone
- Allows for cost complexity
- May not be possible for POU Upstream Programs
 - IOUs have been confirmed

· ·	Application Scenario (Discrete Values) (Average Values)		Tracking Difficulty	Savings Estimate Evaluation Risk
Building Type Climate Zone Vintage HVAC System	None	High	Hard	Low Risk/RR=1
Building Type Climate Zone	Vintage HVAC System	Med	Med	Low Risk/RR close to 1
Building Type	Climate Zone Vintage HVAC System	Med-Low	Easy	Med-High Risk for HVAC measures
None	Building Type Climate Zone Vintage HVAC System	Low	Too easy	High Risk if weights used do not reflect the participant population

Lighting Subcommittee

Understanding IE Build-Up Commercial Buildings

Applicatio	n Scenario	Accuracy		Savings Estimate	
(Discrete Values)	(Average Values)	Accuracy	Difficulty	Evaluation Risk	
Building Type Climate Zone Vintage HVAC System	None	High	Hard	Low Risk/RR=1	
Building Type Climate Zone	Vintage HVAC System	Med	Med	Low Risk/RR close to	
 Building Type	Climate Zone Vintage HVAC System	Med-Low	Easy	Med-High Risk for HVAC measures	
None	Building Type Climate Zone Vintage HVAC System	Low	Too easy	High Risk if weights used do not reflect the participant population	

- Note: Assumed steps are in *italics*
- Available back-up is not the latest data (from 2013).
- Simulated models for all combinations of: (~59,000 modelled impact values)
 - 11 HVAC Types
 - 8 Vintages (as of 2014)
 - 16 Climate Zones
 - 24 Building Types
 - 3 Lighting Base Technologies
- Creates HVAC Type weighted table (~35,000)
- Creates Vintage weighted table (~9,000)
 - Basis for Climate Zone values in IE table
- Creates Climate Zone weighted table (558)
 - Basis for IOU values in IE table
- Creates Build Type weighted table (24)
 - Basis for COM values in IE table (RES is equivalent for residential)
 - COM values also available for specific Climate Zones
- Adjustment due to Occupancy Sensor Scenario

Lighting Subcommittee 6/5/2018

IOU Feedback

IOU	Program	Res/Com	Collect Zip	Collect BT
SCE	Upstream (Retail)	94%/6% (evaluation result)	Yes (of store) Use CZ (of Store)	No Use SFm or OfS
	Distributor	100% Com	Yes (of installation) Use CZ	Yes From Service Account Use actual BT
PG&E	Upstream (Retail)	94%/6% (evaluation result)	Yes (of store) Use IOU	No Use COM or RES
	Distributor	100% Com	Yes (of installation) Use IOU	Yes From Service Account Use COM
SDG&E	Upstream (Retail)	94%/6% (evaluation result)	Yes (of store) Use CZ (of Store)	
	Distributor	100% Com	Yes (of installation) Use CZ	

Blue Text: Not confirm

Application	n Scenario		Tracking	Ret	tail	Distributor		
(Discrete Values)	(Average Values)	Accuracy	Difficulty	Data Collected	Data Used	Data Collected	Data Used	
Building Type Climate Zone Vintage HVAC System	None	High	Hard					
Building Type Climate Zone	Vintage HVAC System	Med	Med	CZ (of Store)		CZ (Service Account) BT (Service Account)		
Building Type	Climate Zone Vintage HVAC System	Med-Low	Easy					
None	Building Type Climate Zone Vintage HVAC System	Low	Too easy	BT (not available)				

Assumptions:

- □ Climate Zone of the store = Climate Zone of the claim (via zip code)
- Building Type's Sector for Retail determined by prior evaluation result: 94% / 6%

Applicatio	n Scenario		Tracking	Re	tail	Distri	butor
(Discrete Values)	(Average Values)	Accuracy	Difficulty	Data Collected	Data Used	Data Collected	Data Used
Building Type Climate Zone Vintage HVAC System	None	High	Hard				
Building Type Climate Zone	Vintage HVAC System	Med	Med	CZ (of Store)	SCE (CZ, SFm/OfS BT) SDG&E (CZ, SFm/OfS BT)	BT (Service	SCE (CZ, BT) SDG&E (CZ, BT)
Building Type	Climate Zone Vintage HVAC System	Med-Low	Easy		PG&E (IOU)		PG&E (IOU)
None	Building Type Climate Zone Vintage HVAC System	Low	Too easy	BT (not available)	PG&E (COM)		PG&E (COM)

Assumptions:

- Climate Zone of the store = Climate Zone of the claim (via zip code)
- Building Type's Sector for Retail determined by prior evaluation result: 94% / 6%

Applicatio	n Scenario		Tracking	Re	tail	Distri	butor
(Discrete Values)	(Average Values)	Accuracy	Difficulty	Data Collected	Data Used	Data Collected	Data Used
Building Type Climate Zone Vintage HVAC System	None	High	Hard				
Building Type Climate Zone	Vintage HVAC System	Med	Med	CZ (of Store)	SDG&E (CZ,	CZ (Service Account) BT (Service Account)	SCE (CZ, BT) SDG&E (CZ, BT)
Building Type	Climate Zone Vintage HVAC System	Med-Low	Easy		PG&E (IOU)		PG&E (I <mark>OU</mark>)
None	Building Type Climate Zone Vintage HVAC System	Low	Too easy	BT (not available)	PG&E (COM)		PG&E (COM)

Assumptions:

- □ Climate Zone of the store = Climate Zone of the claim (via zip code)
- Building Type's Sector for Retail determined by prior evaluation result: 94% / 6%
- Red Text Information collected but not used.

Savings Accurac	СУ
Recommendation	ns

r ip prication occinario			Tracking			5.50.15000		
(Discrete Values)	(Average Values)	Accuracy	Difficulty	Data Collected	Data Used	Data Collected	Data Used	
Building Type Climate Zone Vintage HVAC System	None	High	Hard					
Building Type Climate Zone	Vintage HVAC System	Med	Med	C7 (of Store)	SCE (CZ, SFm/OfS BT) SDG&E (CZ, SFm/OfS BT)	Account) BT (Service	SCE (CZ, BT) SDG&E (CZ, BT)	
 Building Type	Climate Zone Vintage HVAC System	Med-Low	Easy		PG&E (IOU)		PG&E (IOU)	
None	Building Type Climate Zone Vintage HVAC System	Low	Too easy	BT (not available)	PG&E (COM)		PG&E (COM)	

20

- Observation
 - IOUs are collecting as much data as is available (already)
- Improve savings accuracy by
 - Climate Zone:
 - Retail Programs: Use CZ of retail store instead of IOU
 - ▼ Distributor Programs: Use CZ of installation instead of IOU
 - ▼ (Change for PG&E)
 - Building Type:
 - Retail Program: Use COM / RES instead of OfS / SFm
 - (Change for SCE / SDG&E)
- Risk
 - Weighting for COM / RES does not reflect participant population
 - Question: Is there data to suggest that OfS / SFm should be used?

Lighting Subcommittee 6/5/2018

Recommendations

- Special Issues Section
 - Identify which questions can be improved with better data
 - Identify which questions cannot be improved with better data
 - Tackle these issues with policy decisions
 - Include as part of measure definition so that not changed later
 - Example: TX TRM (pg 2-12, 25 of 250)
- Biggest opportunity for improvement lies in Net-to-Gross

Back-Up

- Therm savings (large discrepancy for IE0
- Evaluation results (2014, 2015 examples)

Greater than 25% Difference for Gas IE

Greater than 25% Difference for Gas

BldgVint	BldgType -	Count of BldgLoc
■ Ex	Com	7
	MBT	1
	Mtl	1
	OfL	5
	OfS	4
■New	EUn	1
	Htl	27
	MBT	10
	OfL	38
	OfS	32
	Res	1

Primarily – New Vintage (2014) or Office Large/Small

2014 Deemed Lighting

- High Realization Rates
- Low Net to Gross

Table 5-1: 2014 First Year Gross kWh and kW Realization Rates by PA and Measure

PA ESPI Measure	Ex Ante Gross kWh Savings	Ex Post Gross kWh Savings	GRR kWh	Ex Ante Gross kW Savings	Ex Post Gross kW Savings	GRR kW			
PG&E									
CFL	1,957,197	1,281,180	65%	354	248	70%			
Delamping	8,677,833	6,449,361	74%	1,970	1,543	78%			
LED	18,932,771	23,886,799	126%	3,779	5,449	144%			
Occupancy Sensors	5,234,301	3,743,447	72%	985	1,055	107%			
T5	11,720,599	12,423,521	106%	2,873	2,884	100%			
SCE	SCE								
CFL	384,040	315,649	82%	81	64	79%			
Delamping	0	0	0%	-	-	0%			
Occupancy Sensors	5,304,656	5,329,126	100%	1,222	1,251	102%			
T5	15,236,610	18,490,148	121%	3,956	4,175	106%			
SDG&E									
CFL	2,545,288	2,271,703	89%	501	469	94%			
Delamping	1,029,499	1,029,499	100%	241	241	100%			
Occupancy Sensors	1,949,708	780,211	40%	451	191	42%			

2014 Deemed Lighting NTGR ESPIN

Table 4-21:	NTGRs	by Program	Delivery
-------------	-------	------------	----------

ESPI Measure		NTGR	Relative	NTGR	Relative			
Program Delivery	n	kWh	Precision	kW	Precision			
CFL OF								
Deemed	40	0.56	5%	0.57	5%			
Direct Install	98	0.63	3%	0.63	3%			
Local Government Partnership	137	0.61	3%	0.62	3%			
Third/Local Party Implementer	95	0.66	3%	0.66	2%			
Total	370	0.61	2%	0.62	2%			
LED								
Deemed	185	0.54	4%	0.54	4%			
Local Government Partnership/Direct Install	379	0.63	2%	0.63	2%			
Third/Local Party Implementer	34	0.65	5%	0.65	5%			
Total	598	0.57	2%	0.57	2%			
Linear Delamp								
Deemed	100	0.61	4%	0.59	4%			
Direct Install	29	0.73	4%	0.73	5%			
Local Government Partnership	112	0.62	3%	0.63	3%			
Third/Local Party Implementer	66	0.64	6%	0.52	8%			
Total	307	0.65	2%	0.63	2%			
Occupancy Sensors								
Deemed	53	0.56	7%	0.55	7%			
Direct Install	50	0.62	5%	0.62	5%			
Local Government Partnership	26	0.67	7%	0.68	7%			
Third/Local Party Implementer	50	0.57	6%	0.57	6%			
Total	179	0.57	3%	0.57	3%			
T5 Linear	T5 Linear							
Deemed	109	0.58	5%	0.58	5%			
Local Government Partnership/ Direct Install	112	0.67	3%	0.67	3%			
Third/Local Party Implementer	25	0.51	15%	0.50	15%			
Total	246	0.61	3%	0.61	3%			

2015 Deemed Lighting

- High Realization Rates
- Low Net to Gross

TABLE 8-1: POPULATION FIRST YEAR GROSS MWH AND MW REALIZATION RATES FOR EVALUATED MEASURES

PA	ESPI Measure	First Year Gross MWh Savings				First Year Gross MW Savings			
		Ex Ante Savings	Ex Post Savings	GRR	RP	Ex Ante Savings	Ex Post Savings	GRR	RP
PGE	Indoor LED	39,810	39,277	99%	7%	8.2	8.0	98%	12%
	Delamping	9,092	9,092	100%		2.1	2.1	100%	
SCE	Indoor LED	66,661	79,834	120%	10%	13.2	11.9	90%	14%
	Delamping	2,156	2,156	100%		0.5	0.5	100%	
	Occupancy Sensors	840	840	100%		0.2	0.2	100%	
SDGE	Indoor LED	19,279	17,069	89%	6%	3.4	3.0	89%	6%
	Occupancy Sensors	195	195	100%		0.0	0.0	100%	
SW	Outdoor LED	14,426	20,534	142%	29%				
SW	Outdoor Street Light	11,418	11,418	100%					

2015 Deemed Lighting NTGR

TABLE 7-1: EX ANTE AND EX POST NET-TO-GROSS RATIOS AND PAI SCORES FOR INDOOR LED MEASURES BY LED TYPE

D.A.	LED Type	Sites	N1	TG .		PAI Score	
PA		n	Ex Ante	Ex Post	PAI1	PAI2	PAI3
PGE	A-Lamp	47	0.70	0.57	0.49	0.67	0.55
	Downlight	40	0.60	0.53	0.49	0.58	0.51
	Reflector Lamp	48	0.66	0.57	0.49	0.72	0.52
	All	135	0.65	0.55	0.49	0.65	0.52
SCE	A-Lamp	55	0.60	0.63	0.50	0.86	0.54
	Downlight	40	0.62	0.63	0.52	0.62	0.74
	Reflector Lamp	40	0.60	0.62	0.53	0.59	0.76
	All	135	0.61	0.63	0.51	0.73	0.65
SDGE	A-Lamp	45	0.60	0.65	0.54	0.72	0.68
	Downlight	30	0.60	0.64	0.41	0.77	0.75
	Reflector Lamp	30	0.60	0.71	0.51	0.81	0.80
	All	105	0.60	0.67	0.50	0.77	0.74

Back-up Slides

Lighting Subcommittee 6/5/2018

2016: Lighting Savings Perspective

2016 Q1-Q4 - EEStat Data Total: 1,494.88 GWh

Lighting Subcommittee 6/5/2018

Indoor Lighting

Indoor Lighting	
Lighting Indoor CFL > 30 Watts	2.58
Lighting Indoor CFL 3 Way	13.54
Lighting Indoor CFL A Lamp	31.46
Lighting Indoor CFL Basic	138.87
Lighting Indoor CFL Fixture	1.76
Lighting Indoor CFL Globe	0.00
Lighting Indoor CFL Other	0.00
Lighting Indoor CFL Reflector	4.65
Lighting Indoor Controls Daylighting	0.17
Lighting Indoor Controls Other	1.40
Lighting Indoor Controls Wall Or Ceiling	1.30
Lighting Indoor Fixture Integrated Occu	0.17
Lighting Indoor HID	0.18
Lighting Indoor High Bay Fluorescent	2.21
Lighting Indoor Induction	0.02
Lighting Indoor LED Fixture	125.80
Lighting Indoor LED Lamp	123.43
Lighting Indoor LED Night Light	0.20
Lighting Indoor LED Other	19.97
Lighting Indoor LED Reflector Lamp	124.17
Lighting Indoor LED Signage	0.13
Lighting Indoor Linear Fluorescent	42.10
Lighting Indoor Linear Fluorescent Dela	3.96
Lighting Indoor Other	26.09
Lighting Outdoor LED Fixture	0.03
Lighting Outdoor LED Streetlight	0.28
Other	-
Retrocommissioning Lighting	0.06
Indoor Lighting Total	664.53

Lighting Subcommittee 6/5/2018

Lighting Savings Perspective

2016 CA Deemed Electric Savings (Total = 912 GWh/yr)

