Measure Cost Estimation: Current Practices & Proposed Guidance

JENNIFER HOLMES CAMERON ASSADIAN CHAU NGUYEN AYAD AL-SHAIKH JUNE 25, 2020

Overview

- Goal
 - Characterize current practices to estimate measure costs
 - Create guiding principles for measure developers
- Value
 - Create broad understanding of measure cost requirements and "fundamentals"
 - Facilitate the consistency of data sources and methods
 - Provide greater transparency into measure development
 - Provide measure developers with trade-offs associated with each method to ensure accuracy, transparency, and cost-efficiency
- Next Steps

PresentationJune Cal TF meeting

 Late June, early July

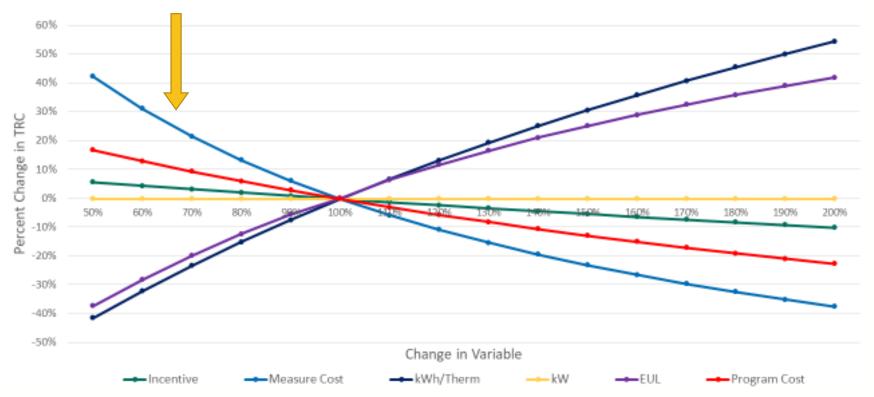
Subcommittee Review of Draft Paper

Early July

Cal TF Review of Final Draft Paper

July Cal TF meeting

Cal TF Affirmation of Final Paper


Sept Cal TF meeting

Importance of Measure Costs

3

- Program/portfolio cost effectiveness (TRC)
- Cost is a key driver

Source: "Cost-Effectiveness Training" (1/7/2019)

Fundamentals

Measure cost estimates should

- Comply with regulatory direction
- Represent average prices actually paid by customers
 - Estimates of prices for high efficiency technology and standard efficiency or in situ counterpart
 - Whether incremental or full measure costs are used depends upon measure application type
- Represent current market conditions
- Enable an "apples to apples" comparison between base and measure case costs
- Exclude cost associated with product or feature choices <u>not</u> directly related to EE.

Background

- California Standard Practice Manual (2001) establishes requirements for project and measure costs as required inputs for cost effectiveness tests.
 - "all equipment costs, installation, operations and maintenance, cost of removal (less salvage value), and administration costs" regardless of who pays for them.
- CPUC provided the "guide rails" that DEER assumptions, methods, and data shall be utilized for all non-DEER measures, if appropriate and available.
 - D.12-05-015
- If DEER values and methods are not available, new values may be proposed for CPUC Staff review and approval

Background

California measure cost studies

- 1996 Measure Cost Study (Xenergy, 1996)
- 2001 DEER Update Study. (Xenergy, 2001)
- 2004-2005 Database for Energy Efficiency Resources (DEER)
 Update Study (Itron, 2005)
- 2008 DEER measure cost update (Summit Blue, 2008)
- 2010-2012 WO017 Ex Ante Measure Cost Study (Itron, 2014)

WO017

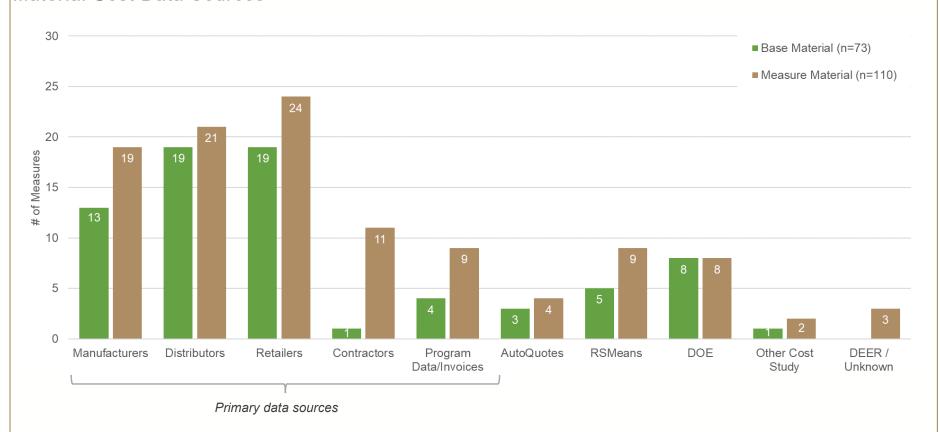
- DEER and Non-DEER measures
- Extensive data collection
- Emphasis on hedonic price modeling to isolate incremental cost of energy performance
- Detailed review of data sources, limitations, pros/cons, etc.

Background

- In May 2020, CPUC Staff acknowledged that cost values in DEER are becoming outdated and thus should not be used for future measure updates or for new measures
- IOUs have already been adjusting WO017 costs for inflation and using other sources for measures not covered in WO017

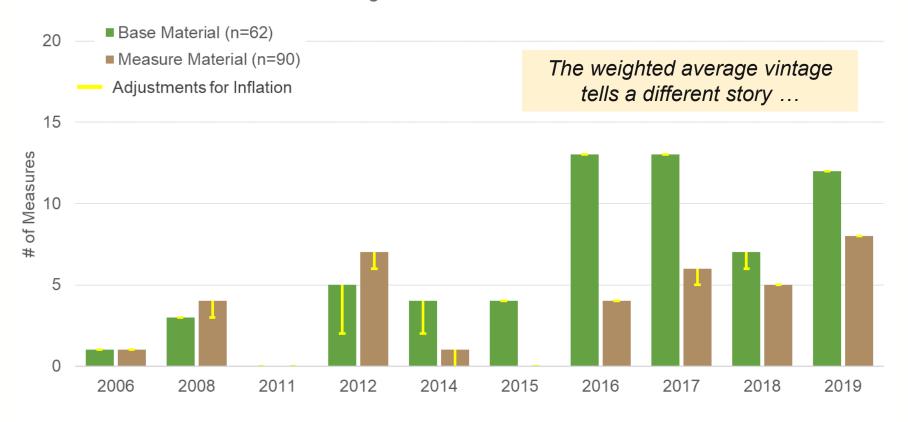
Approach

- Cal TF Staff reviewed measure cost documentation of 116 affirmed and approved statewide measures
- Categorized data sources for material and installation labor costs:
 - Data sources are an important consideration with respect to the overall quality of a measure cost estimate.
- Examined vintage of data
 - Vintage of cost data is an important consideration to ensure measure cost estimates reflect current market conditions
- Categorized methods to develop point estimates
- Consistency checks to assess "apples to apples" comparisons


Caveat: had to assign single category, even if multiple categories were present

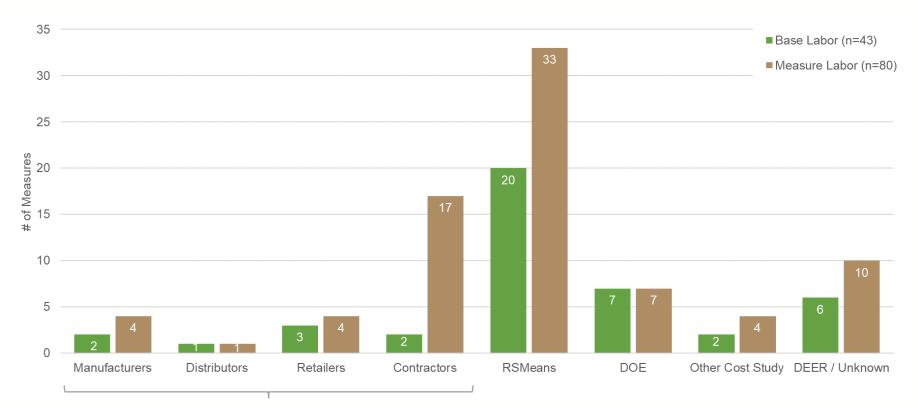
Current Practices: Material Costs

Material Cost Data Sources



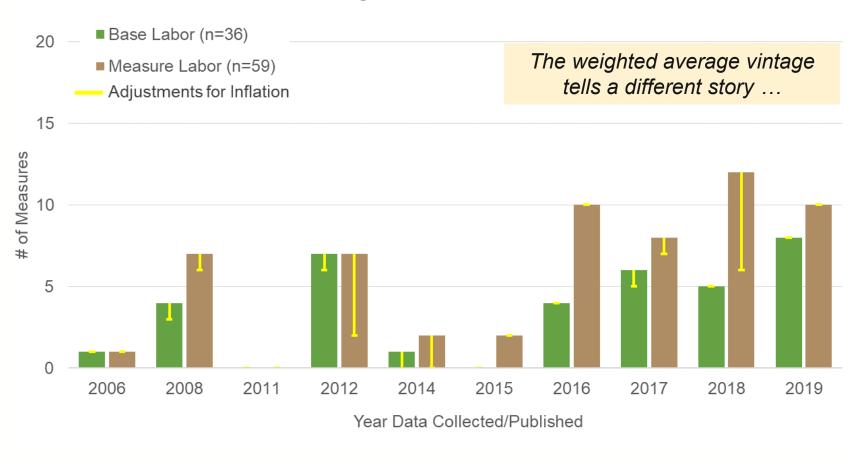
Current Practices: Material Costs

Vintage of Material Cost Data


Year Data Collected/Published

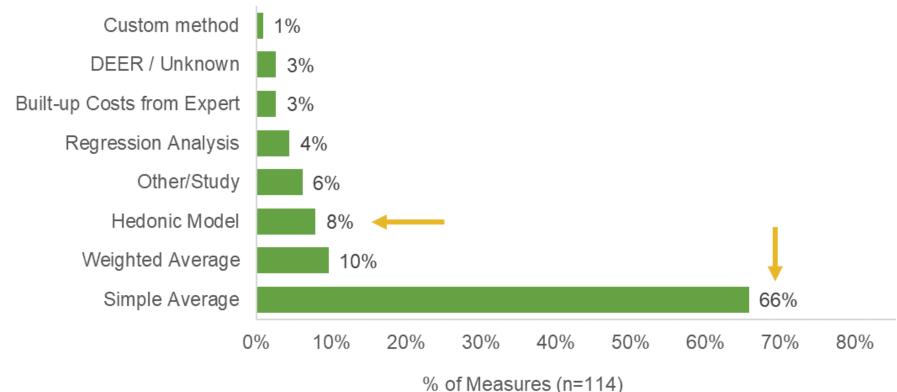
Current Practices: Installation Costs

Installation Labor Cost Data Sources


Primary data sources

Current Practices: Installation Costs

Vintage of Labor Cost Data



Current Practices: Analytical Methods

Measure Case Material Cost Analytical Methods

ers

Proposed Guidelines: Measure Developers

- 1. Align with TRC Requirements
 - Required baselines and cost basis
- 2. Develop Data Collection and Analysis Plan that Considers:
 - Equipment supply chain
 - Data sources and methods used to estimate costs for similar measures
 - Data needs (base/measure equipment, labor, O&M, etc.)
 - Data availability
 - Variability of equipment prices within measure offerings and between measure offerings, variability across vendors
 - Sample size
 - Data processing
 - Data limitations and potential biases
 - Analytical method
 - Data validation
- 3. Develop Separate Estimates for Material Costs and Installation Labor
 - Transparency
 - Accurate comparisons

CALIFORNIA TECHNICAL FORUM

Proposed Guidelines: Measure Developers

- 4. Cost Estimates Should Reflect the California Market
 - California vs other state or national average (not necessarily at climate zone/metro level unless warranted)
- 5. Independently Validate Cost Estimates
 - High impact measures
- 6. Develop Base and Measure Costs Using the Same Data Sources, of the Same Vintage, and Using Same Methods (if possible)
 - Ensures "apples to apples" comparison of base and measure
- 7. Document Analytical Methods, Values, Vintage, and Sources of All Data
 - Transparency, reproducibility
- 8. Integrate Measure Cost Data Needs into Program Implementation and Program Tracking
 - Build dataset of products, attributes for future
- 9. Cost Estimates to Reflect Average of Actual Prices Paid
 - Understand when/how weighting of data is necessary
 - Prices from trade allies account for contractor markups, volume discounts, etc.

CALIFORNIA TECHNICAL FORUM

Proposed Guidelines: Measure Developers

- 10. Review and Update Costs Regularly
 - High impact measures
 - Keep in pace with market
 - Need to define appropriate cadence and triggers
- 11. Document Infrastructure Costs During Implementation (fuel substitution measures only)

CALIFORNIA TECHNICAL FORUM

Proposed Guidelines: Crosscutting

- 1. Conduct and/or Leverage Targeted Market Assessments
 - Common recommendation
 - Periodic market studies to keep the pulse of market trends that would trigger the need for a cost update
 - Serve multiple purposes
 - Cost efficient
- Synchronize Measure Cost Reviews and Updates on a Regular Basis for Groups of Measures to Leverage Economies of Scale and Potential Cost Sharing Opportunities
 - Bring back hedonic price models?
 - Foster consistency of methods and data sources
 - Cost/time efficiency
 - Related to #10
- 3. Integrate Data Needs into eTRM
 - "You can't manage what you don't measure"
 - Leverage eTRM to support planning for measure updates

Discussion

High-level comments on proposed guidelines:

- Any initial reactions?
- Any additional guidelines?
- Should guidelines be tailored to different end uses?
- Should specific guidelines be developed for high-impact measures?

Next Steps

Sign up for the subcommittee! (Contact Jennifer Holmes)

Subcommittee will meet ~2x in next 2 weeks

Potential Subcommittee topics:

- What should the triggers be for updating cost data?
- What are the pros & cons of different data sources (refresh what we know)
- What are the best available data sources for different end uses/measure groups? (develop prioritization)
- What are next best alternatives to hedonic price models to be able to isolate energy performance of cost difference? (develop prioritization) For which measures should hedonic price models be a requirement?
- How do costs vary by delivery type? Is this another variable that needs to be considered during cost development?