DEER Alternative

STAKEHOLDER PRESENTATIONS FALL 2015

Executive Summary

- Introduction to the Cal TF
- EE Measure Development, Updating and Maintenance: Status Quo vs. Policy Goals
 - Compared to longstanding CPUC goals
 - Compared to state policy goals for EE
 - Compared to EPA Clean Power Plan (CPP) draft guidance for counting EE for CPP compliance
- Technical Reference Manual Research and Best Practices
- Path Forward
 - Electronic TRM
 - Proposed implementation process

CALIFORNIA TECHNICAL FORUM

The California Technical Forum (Cal TF)

What is the Technical Forum?

A group of in-state and out-of-state technical experts that work in a collaborative and transparent way to review new and updated energy efficiency measures and other technical information related to the integrated demand-side management portfolio.

Cal TF: A Broad Collaborative

CPUC Office of Ratepayer Advocates

The Collaborative Supports the Technical Experts

Technical Forum Members

- Selected through a competitive RFQ process with a ~50% selection rate.
 - CPUC provided input on selection criteria
- 2015 TF Composition:
 - 35 members
 - 450+ years combined industry experience
 - Technical expertise in wide range of energy efficiency technologies
 - 30% from outside of California

EE Measure Development: Commission Goals Compared to Status Quo

- Collaborative
 - Only utilities and CPUC staff involved in measure development
 - Process is adversarial rather than collaborative
- Transparent and Well-Documented
 - Extensive Cal TF staff DEER documentation work has yielded very little clear documentation
 - Most DEER measure parameters cannot be traced to sources; DEER measures parameters generally not reproducible
- Uses Best Available Information
 - CPUC measure approval often delayed until more data is collected
- Balances Accuracy, Precision, Timeliness, Cost, and Certainty
 - DEER is very complex Leads to false precision
 - New measure development is lengthy and expensive
 - Measure values are not fixed from cycle to cycle Over a dozen changes to DEER this year alone

EE Measure Development: State Policy Goals Compared to Status Quo

- Use credible, statewide consistent values for forecasting and planning
 - POUs were unable to continue using DEER
 - Too complex, opaque, hard-to-use and understand
- Increase inter-agency and regional coordination
 - CEC and CPUC use different modeling tools to calculate energy savings.
 - CEC uses EnergyPlus for Title 24 compliance and CPUC uses DOE-2.2 for developing DEER energy savings values
- Energy efficiency as a resource
 - Efficiency can't be a credible resource if IOUs and POUs use different approaches and values for calculating savings from energy efficiency
- Double energy efficiency savings by 2030
 - Protracted review and approval of new/updated measures (e.g. LEDs)
 will make state goals for energy efficiency more difficult to achieve

Ex Ante Alternative Fall 2015

EE Measure Development: Draft US EPA Clean Power Plan Guidance Compared to Status Quo

- On August 3, 2015, the US EPA released draft guidelines to ensure EE measures are "quantifiable and verifiable" for Clean Power Plan compliance purposes.
- Status quo does not conform to EPA draft guidance for EE:
 - DEER measure parameters are not transparent or welldocumented; Workpapers are not publically available
 - 2.4.2. Applicable Guidance: "Based on measure definitions, applicable conditions, assumptions, calculations, and references that are well documented in work papers that are publically available."
 - California workpaper developers use conservative values to speed workpaper approval by CPUC staff
 - ▼ 2.6.2 Applicable Guidance: "Should be designed neither to provide optimistic savings estimates... nor to provide conservative estimates."
 - The system is not collaborative
 - 2.8.2. Applicable Guidance: "Participate in collaborative and joint research to improve breath and quality."

CALIFORNIA TECHNICAL FORUM

Technical Reference Manual Research

- Technical Reference Manuals (TRMs) are the functional equivalent of DEER in other jurisdictions; they contain EE measures, measure parameters and measure documentation.
- Reviewed over 20 TRMs from jurisdictions across the country to identify best practices for measure development and measure repositories
- Interviewed developers and users in with strong TRMs
 - Massachusetts
 - New York
 - Pennsylvania and Mid-Atlantic
 - Illinois
 - Texas
- Reviewed prior literature/analysis on TRMs
 - Most analyses are about 5 years old
 - TRMs have evolved considerably since then
- Identified best practices for:
 - Process process for developing and updating EE measures
 - Structure structure for maintaining measures and associated documentation
 - Content technical guidelines, directives and practices for developing/updating EE measures

TRM Best Practices – Process

- Technical collaboratives open to the public
- Predictable and regular update processes
 - Existing measures must be updated regularly
- Participation by regulatory staff is key
 - Speeds issue resolution
 - Speeds regulatory review
 - Fosters technical understanding between regulators and other stakeholders
 - Builds regulator confidence in results
- Results of collaborative consensus-building process generally adopted by decision makers with little change
 - Regulators maintain final approval authority but can depend on robust process and results to inform decision-making.
- Regulatory Commissions, not staff, approve final values

TRM Best Practices – Structure

- Standard format for each measure characterization, including:
 - Narrative explanation of measure
 - Base and measure case technical specifications
 - Energy and demand savings algorithms
 - Other key parameters (measure life, costs, etc.)
 - Pertinent implementation details (e.g. exclusions)
- All measure parameters clearly linked to measure
- Measure is well-documented and values are reproducible
 - Citations to primary sources, not other TRMs
 - Primary sources maintained and readily available
- Embedded calculators and look up tables
- Non-measure specific tools and information included as appendices
 - NY TRM has excellent descriptions of building prototypes

TRM Best Practices – Content

- Written guidelines for addressing recurring technical issues
 - NW RTF and Mid-Atlantic state use process language
 - Use of reproducible methods, diligent review of all sources...
 - PA and IL use more specific data hierarchies
 - NW RTF has several guidelines on measure complexity, statistical significance, other
- Careful consideration of modeling vs. engineering equations vs. field data
 - □ No "one size fits all"; consider pros and cons of different approaches
- Key parameters (from modeling or engineering equations) should be validated with real data!
 - Field conditions and human behavior may alter forecasted savings
 - Collect data through implementation or early EM&V
 - Identify and implement use of AMI data (e.g. EnergySavvy) and other tools (DOE Building Performance Database)

DEER Alternative: Statewide Electronic TRM – Key Features

- All measures are fully documented with a workpaper
 - All measure parameters are clearly documented and linked
 - Source documents are clearly cited and hosted in the tool
- Modeled values are linked to models
 - Uses EnergyPlus for measures that should be modeled
- Automates measure updates when inputs change—weather files, code updates, etc.
 - Also, includes clear update and revision histories for each measure
- Clear and documented workflow management
 - Identifies who has updated and/or reviewed a measure
- Generates all key outputs for CPUC ex ante database, utility and CPUC cost-effectiveness analysis and reporting, CEC forecasting
- Keyword searchable
- Permits restricted access to protect confidential information
- Open source repository for EE measures

Conclusion: Benefits of the Electronic TRM

- Rigorous, well-documented EE measures
- Common repository for all California measures
- Statewide consistent energy savings values
- Collaborative, consensus-based, public and inclusive process
- Use of open source electronic TRM and tools

Appendix

- The move to "Electronic TRMs"
- Concrete examples of Status Quo Challenges (NRDC request – to be added)

Appendix: The Move to Electronic TRMs

- Key benefits to be gained:
 - Improves documentation
 - Ability to embed tools and supporting documents
 - Enables more detailed revision histories
 - Reduces cost and increases efficiency of data management
 - Through APIs, automatic download of values into utility tracking and planning databases
 - Highly transparent workflow management for new and updated measures.
 - Keyword searchable
- Available tools include:
 - VEIC
 - Nexant iEnergy
 - Energy Platforms
 - Frontier
 - U.S. Department of Energy Platforms