Subcommittee Meeting #3 Appliance/Plug Load

ROGER BAKER AYAD AL-SHAIKH OCTOBER 2017

Objective

- Address existing Appliance/Plug Load measures that would migrate to the eTRM
 - Reconcile differences between IOU workpapers
 - Address issues with DEER values
 - Align IOU and POU methodologies/values
 - Look for opportunities to consolidate/simplify measures where appropriate.

Meeting #3 Agenda

- Recap Meeting #1 and #2
- Discuss Follow-up items from prior meetings
- Review and (hopefully) close measures
 - ☐ Clothes Washers
 - ☐ Clothes Dryers
 - ☐ Retail Products Platform
 - □ Dishwashers
- Review 1 new measure
 - Ozone Laundry

☐ Vending Machine Controllers

☐ PC Power Management

Meeting #1

- Discussed following measures
 - Smart Power Strips (Tier 1 and Tier 2)
 - Retail Products Platform
 - PC Power Management
 - ENERGY STAR Refrigerators
 - Appliance Recycling

Meeting #1 follow-up items

RPP

- Do further research on multi-state aspects of program
- Look at potential evaluation impacts if RPP is split into measures
- PC Power Management
 - Review evaluations, other research to inform position regarding annual savings degradation factor
- Smart Power Strips
 - Review CalPlug specifications and test approach
- ENERGY STAR Refrigerators
 - Come to resolution regarding "DEER Adjustment Factor"

Meeting #2

- Agenda
 - Continue discussion on RPP
 - Review Additional Measures
 - ENERGY STAR Clothes Washers
 - ▼ ENERGY STAR Clothes Dryers
 - ENERGY STAR Dishwashers
 - Vending Machine and Beverage Case Control
 - Follow-up discussion topics
 - PC Energy Management
 - Smart Power Strips
 - ENERGY STAR Refrigerators

Meeting #2 follow-up

- Review EAR disposition for Clothes Washer Recycling
 - Cycles/yr determinations for that measure
 - Potential applicability to ENERGY STAR Clothes Washer measure

Follow-up - Refrigerators

- ENERGY STAR Refrigerators
 - DEER Basis Factor in work papers
 - Traced origin to 2012 document
 - ▼ Part of DEER 2011 documentation
 - ▼ "DEER Weighted and Scaled Measures", May 20, 2012
 - Apparent intent is to address interactive energy impacts between refrigerator and home
 - Refrigerator performance is function of space temperature
 - Refrigerator emits heat that impacts HVAC

Refrigerators (cont'd)

The energy impacts associated with residential refrigerator and freezer measures are determined by the measure technology DOE-rated annual energy use (kWh/yr):

kWh savings = WB_EnImpact (kWh/ΔRatedkWh) * Meas_ ΔRatedkWh

kW savings = WB_DemImpact (kW/ ΔRatedkWh) * Meas_ ΔRatedkWh

therm savings = WB GasImpact (therm/ ΔRatedkWh) * Meas ΔRatedkWh

where:

- WB_EnImpact = normalized whole building electricity savings (kWh/ΔRatedkWh) as stored in the energy impacts table.
- WB_DemImpact = normalized whole building electric demand (kW/ΔRatedkWh) as stored in the energy impacts table.
- WB_GasImpact = normalized whole building gas savings (therm/ΔRatedkWh) as stored in the energy impacts table.
- Meas_ΔRatedkWh = Measure "delta" rated annual kWh, defined as (Base technology rated annual kWh Measure technology rated kWh); there are separate values for above-code and above pre-existing cases. These values are stored as part of the measure definition or are calculated based on the technology references that are part of the measure definition.

Source: DEER Scaled and Weighted Measures, page 3

Refrigerators (cont'd)

- Still some uncertainty regarding whether this factor is accurate
 - Factor is derived from building simulations
 - DEER team developed performance adjustment to address refrigerator energy consumption as function of space temperature
 - Unclear how (or if) DEER addresses behavioral interactions (e.g., door openings)
- Proposal: recommend migrating to eTRM, but continue to research adjustment factor

Cross-Cutting Issue Retail Products Platform (RPP)

- Subcommittee discussed, and potentially agreed:
 - Each product under RPP would be established as a measure in eTRM
 - There would be a unique delivery identifier for RPP
 - Would allow assignment of values unique to RPP
 - NTG
 - o ISR
 - Would preserve aspects of RPP program delivery within eTRM
 - Support evaluation process
 - Allows flexible measure management within eTRM

7.05 – Energy Star Clothes Washers

- Main follow-up topic from last call was resolving annual cycles
 - EAR Team disposition for clothes washer recycling identifies different values than those used by USDOE
 - Paper was circulated to subcommittee by Roger
 - EAR disposition notes that DEER relies on USDOE methodology for new clothes washer savings
 - Aligns UEC values for base and measure equipment
 - Ensures that savings values are not based on differences in determination
 - Similar argument can be made for clothes washers in MF common area laundries and laundromats
 - USDOE values based on multiple studies, including several from California

7.04 - Energy Star Clothes Dryers

- Workpaper Differences (Standalone vs. RPP)
 - Savings methods aligned between workpapers
 - Rely on DOE methods
 - RPP savings corrected in compliance revision to incorporate final moisture content per DOE test procedure, plus use interactive heat gain guidance from Staff
 - Minor difference in permutation quantity
 - Standalone Dryer template has single value for all dryers
 - RPP has 13 permutations
 - It appears that the RPP dryer is more developed in this regard
 - Minor differences for costs
 - Tier 1 Incremental Cost
 - \$49.50 for standalone Dryer measure
 - \$84 for Dryer in RPP
 - Different NTG
 - 0.55 for ENERGY STAR dryer standalone
 - ▼ 0.70 for ES Emerging Technology Award dryer standalone
 - 0.20 for dryers under RPP (per Staff Disposition)

7.04 - Energy Star Clothes Dryers

- Recommendation Where workpapers differ,
 - Adopt RPP Dryer Measure calculations
 - Adopt RPP Dryer Measure costs
 - Adopt Standalone Dryer NTG ratios for non-RPP delivery mechanisms
 - RPP NTG trajectory is likely outside scope of this subcommittee

7.12 - Energy Star Dishwasher

Measure is in DEER

- Negative kWh savings
- Mixed kW reductions
- Positive Therm savings
- Unclear what methodology/source was used to achieve these values

Measure is in POU TRM

- ENERGY STAR qualified dishwashers
 - 37 kWh/yr (electric water heater)
 - 16 kWh/yr, 0.93 therm/yr (gas water heater)

7.12 - Energy Star Dishwasher

- Follow-up from Last Call
 - SCG provided work paper
 - Focuses on dishwashers with Estimated Annual Energy Use (EAEU) of 199 kWh or less
 - Interpolates DEER 180 kWh and DEER 260 kWh values from READI
- Propose migrating to eTRM with 3 tier permutations
 - **ENERGY STAR**
 - ENERGY STAR Most Efficient
 - 199 kWh or less (Top Efficiency)

7.18 – Vending Machine Controller

- POU TRM relies on same data as other states' TRMs to arrive at much larger savings versus Work Paper
- Massachusetts TRM notes that measure is not eligible for installation on ENERGY STAR qualified vending machines, as they already have control capability built-in

Proposal:

- Approve current workpaper for migration to eTRM
- Conduct research to update hours-of-use reduction

Measure Specific Issue 7.15 – PC Management Software

- ((18)
- Examine parameters that affect savings:
 - Climate Zone / Interactive Effects (vary by CZ and PA)

February Confinence February Confinence of the C

Measure Specific Issue 7.15 – PC Management Software

(19)

CPM Energy Savings – Source Data

7.15 - PC Management Software

- Includes an annual reduction factor in savings.
 - Evaluator recommends one of several paths forward:
 - 1) Continue to apply savings degradation factor each year
 - 2) Upgrade UEC value annually
 - Upgrade UEC every two or three years, and apply degradation during non-update years
 - Expectation is that UEC will continue to decrease
 - ▼ LCD monitors -> LED monitors -> OLED monitors
 - Newer Operating Systems have much better standby/sleep mode recovery
 - One offsetting item is increasing use of multi-monitor workstations

7.15 - PC Management Software

- Proposal:
- Migrate to eTRM
 - Include degradation factor for now
 - UEC update would be beneficial, but will take time and money
 - Collapse interactive effects
 - Impact variations by climate zone are minimal
 - Should be minimal since savings mostly occurs during building unoccupied times
 - Analysis suggests it is statistically insignificant in any event

7.09 - Ozone Laundry - Commercial

- PG&E Work Paper
- Technology uses Ozone (O₃) injection into wash water to reduce detergent and hot water needs
- Measure limited to nursing homes, correctional facilities, large hotels/motels and fitness centers. Tunnel washers not eligible for measure.
- Hot water reduction determined from prior projects.
 - x 86% reduction in hot water usage
 - 39.3 therm savings annually per pound of laundry capacity
- Electric impacts not quantified in workpaper
 - Reduced hot water pumping requirement
 - Reduced washer cycle time
 - Decreased dryer requirement
 - Ozone generator increases electric energy required

7.09 - Ozone Laundry - Commercial

- Researched Ozone Laundry in other TRMs
 - Exists in Illinois TRM v6.0
 - Gas savings similar to PG&E workpaper
 - 81% hot water reduction in IL-TRM
 - 86% hot water reduction in PG&E work paper
 - Both based on existing projects in respective states
 - ▼ IL TRM quantifies electric impacts
 - 25% reduction in water per load (hot and cold)
 - 2.93 kWh pump savings per pound of laundry capacity (kWh/lb-cap)
 - Washer savings negligible (0.00082 kWh/lb-cap)
 - Ozone Generator electric use negligible (0.0021 kWh/lb-cap)
 - Dryer Load impacts not considered

7.09 - Ozone Laundry - Commercial

Proposal:

- Migrate PG&E work paper to eTRM
- Review IL TRM measure for reliability of electric impact determination, and incorporate into measure

Next Call and Next Steps

- Follow up on issues from today's call
- Review/update Power Strips (Tier 1 and Tier 2)
- Revisit and close out remaining open measures

Appendices

27

Refrigerator TRM Review

State	Uses DOE Test Method	Applies Adjustment to Unit Savings	Comment
Connecticut	Yes	No	
Hawaii	Yes	No	
Maine	Yes	Yes	98.8% factor based on in situ metering versus DOE calculation study
Massachusetts	Yes	No	
Minnesota	Yes	No	
New York	Yes	Yes	If old refrigerator not recycled, applies 80% "Market Effects" factor to savings
Pennsylvania	Yes	No	
Rhode Island	Yes	No	
Texas	Yes	No	
Vermont	Yes	No	
Illinois	Yes	No	

CALIFORNIA TECHNICAL FORUM

Appendix: Support Data

PGE RASS Data – Clothes Dryer

DHW Fuel	NO DRYER	NATURAL GAS DRYER		BOTTLED GAS DRYER		NOT Applica Ble	
Natural Gas	471	1,787	2,572	3*	10*	499	5,342
	8.80%	33.50%	48.10%	0.1%*	0.2%*	9.30%	100%
Electric	15*	10	73			38	136
	11.0%*	7.4%*	53.70%			27.90%	100%
Propane	4*	2*	7*	5*		9*	27
	14.8%*	7.4%*	25.9%*	18.5%*		33.3%*	100%
Solar		1*	1*				2
		50.0%*	50.0%*				100%
Other						2*	2
						100.0%*	100%
Total	490	1,800	2,653	8	10	548	5,509
	8.90%	32.70%	48.20%	0.10%	0.20%	9.90%	100%

SCE RASS Data – Clothes Dryer

DHW Fuel	NO DRYER	NATURAL GAS DRYER		BOTTLED GAS DRYER	DESDONSE	NOT APPLICABL E	Total
Natural Gas	790	5,443	1,615	17*	21*	1,031	8,917
	8.90%	61.00%	18.10%	0.2%*	0.2%*	11.60%	100%
Electric	94	32	497	11*	11*	317	962
	9.80%	3.30%	51.70%	1.1%*	1.1%*	33.00%	100%
Propane	62	5*	138	179		48	432
	14.40%	1.2%*	31.90%	41.40%		11.10%	100%
Solar						1*	1
						100.0%*	100%
Other	1*		1*			6*	8
	12.5%*		12.5%*			75.0%*	100%
Total	947	5,480	2,251	207	32	1,403	10,320
	9.20%	53.10%	21.80%	2.00%	0.30%	13.60%	100%

SCG RASS Data – Clothes Dryer

DHW Fuel	NO DRYER	NATURAL GAS DRYER		BOTTLED GAS DRYER	DESDONSE	NOT APPLICABL E	Total
Natural Gas	861	6,181	1,648	10*	22*	1,025	9,747
	8.80%	63.40%	16.90%	0.1%*	0.2%*	10.50%	100%
Electric	17*	33	58			38	146
	11.6%*	22.60%	39.70%			26.00%	100%
Propane		4*	2*			4*	10
		40.0%*	20.0%*			40.0%*	100%
Solar						1*	1
						100.0%*	100%
Other		1*	1*			5*	7
		14.3%*	14.3%*			71.4%*	100%
Total	878	6,219	1,709	10	22	1,073	9,911
	8.90%	62.70%	17.20%	0.10%	0.20%	10.80%	100%

SDGE RASS Data – Clothes Dryer

DHW Fuel	NO DRYER	NATURAL GAS DRYER	ELECTRIC DRYER	BOTTLED GAS DRYER		NOT Applica Ble	Total
Natural Gas	71,366	426,196	200,691	118*	474*	110,385	809,230
	8.80%	52.70%	24.80%	0.0%*	0.1%*	13.60%	100%
Electric	442*	5,877	9,126			7,203*	22,648
	2.0%*	25.9%*	40.30%			31.8%*	100%
Propane			120*	108*		355*	583
			20.6%*	18.5%*		60.9%*	100%
Solar							
Other		108*					108
		100.0%*					100%
Total	71,808	432,181	209,937	226	474	117,942	832,568
	8.60%	51.90%	25.20%	0.00%	0.10%	14.20%	100%

7.05 – Energy Star Clothes Washers

RASS Summary by IOU

		Gas WH	Electric WH
PG&E	Gas Dryer	40%	0%
SCE		72%	0%
SDG&E		66%	1%
SCG		78%	0%
PG&E	Electric Dryer	58%	2%
SCE		21%	7%
SDG&E		31%	1%
SCG		21%	1%

Source: Clothes Washers Calculations_R6.xls (PGE)

7.05 – Energy Star Clothes Washers

- Workpaper Differences
 - MF-CA and Non-Res wash cycles/yr
 - ▼ MF-CA = 1,095 per 2015 Technical Support Document (TSD)
 - ➤ Non-Res = 1,497 per 2015 TSD
 - PGE WP uses these values
 - Differing Electric Savings between IOU
 - Appears to be due to Dryer and Water Heating share differences
 - Efficient washer wrings out more moisture from clothes, reducing dryer requirements
 - PGE has largest overall percent of electric dryers

7.12 - Energy Star Dishwasher

- DOE Dishwasher Standard assumes electric water heating
 - Nearly half of energy usage in test method is for water heating
 - Most efficiency gains above code arise from reducing hot water use
 - Reduce sump volume in dish machine tub
 - Improve water filtration within dishwasher
 - Optimize spray arm and nozzle configuration
 - Incorporate heater into base of tub
 - Generally these will increase the amount of energy used by the machine itself
 - Other actions could reduce machine use
 - Increase insulation of machine to retain more heat
 - Use Permanent Magnet Motor for impeller drive
 - Improved and more sophisticated controls

7.12 – Energy Star Dishwasher

- ENERGY STAR calculator assumes reduction in machine energy use
 - 0.42 kWh/cycle versus 0.45 kWh/cycle for DOE compliant
- ENERGY STAR qualified list 80 standard-size models with positive machine energy savings
 - 43 models meet ENERGY STAR Most Efficient criteria
- ENERGY STAR Most Efficient list contains 53 models
 - 10 models have negative machine savings
 - 37 models that do not meet Most Efficient criteria show positive machine savings
- Proposal
 - Migrate from DEER to eTRM
 - Parse out machine savings from total savings
 - Consider working with CEE to establish a Tier 2 standard

Standard-size Dishwasher Consumption

				Per Cycle Energy Use Component			
			Standby		Water	Machine +	
	Energy Use	Water Use	Power	Total	Heating	Drying	
Level	(kWh/yr)	(gal/cyc)	(W)	(kWh/cyc)	(kWh/cyc)	(kWh/cyc)	
Baseline	307	5.00	0.0	1.43	0.82	0.61	
1	295	4.25	0.5	1.35	0.70	0.65	
2	280	3.50	0.5	1.28	0.58	0.70	
3	234	3.10	0.5	1.07	0.51	0.56	
4	180	2.22	0.5	0.82	0.37	0.45	
TSD inputs	5						
Cycles per	Year	215					
Standby H	ours	8,551	hr/yr				
Csp(water)		0.0024	kWh/gal-F	:			
T(rise)		70	F				
Eff(water	heater,elec)	102%	issue with				

Recreated from Table 7.2.3 of TSD

Cross-Cutting Issue Retail Products Platform (RPP)

Background:

- PG&E and SMUD are currently offering RPP.
- Operates as a "Market Transformation" program, not a "Resource Acquisition" program
- Net-to-Gross follows a Bass Diffusion Model
- Cost re-calculated annually using hedonic price modeling from a web-harvesting tool that runs periodically throughout the year.
- Savings methodology matches the methodologies used for a "Resource Acquisition" program.

Cross-Cutting Issue Retail Products Platform (RPP)

- Background (continued):
 - □ Includes: x Freezers
 - Electric Clothes Dryers
 - Gas Clothes Dryers

- **X** Room Air Cleaners
- Soundbars
- Room Air Conditioners
- Additional Measures to be added for 2017.
 - Refrigerators
 - Clothes Washers
- Proposed Measures for 2018
 - Dehumidifiers
- General principle is to add two measures annually

7.18 – Vending Machine Controller

- Add-on control for vending machines and beverage coolers
- Uses occupancy sensor technology to shut off lighting and reduce compressor operation
 - Variant uses "sales-based intelligence" to control cooling system operation
- Current work paper uses 4 hours/day for hours-of-use reduction (per DEER 2004-05)
 - Corresponds to 16.67% reduction in energy use
 - ▼ Most other TRMs around the country use 46% reduction, which is largely based on one vendor's claims
 - Wisconsin Focus on Energy cites three studies in support of the 46% value
 - Texas A&M campus study
 - Michigan Energy Office (case study 05-0042)
 - E-Source review (document ER-00-12)
 - Has any valid metering study been done in California to update the DEER value?

7.18 – Vending Machine Controller

- POU TRM relies on same data as other states' TRMs to arrive at much larger savings versus Work Paper
- Massachusetts TRM notes that measure is not eligible for installation on ENERGY STAR qualified vending machines, as they already have control capability built-in

Proposal:

- Approve current workpaper for migration to eTRM
- Conduct research to update hours-of-use reduction