WEN Calculator Usage Reconsideration

April 18, 2017

Issue Statements

1. Whether changing the <u>Marginal Supply of Water</u> within the WEN calculator rises to the level of departing from the default values approved by the CPUC in D.15.09.023?

2. Whether the WEN Calculator is correctly calculating the <u>Annual</u> <u>Embedded IOU Electric Energy Savings</u>?

3. Whether the use of the WEN Calculator should be reconsidered to a more simplified version of the calculator?

Changing Marginal Supply of Water

CPUC Decision 15-09-023 Regarding Tools for Calculating the Embedded Energy in Water

- Energy efficiency Program Administrators shall use the Water-Energy Calculator and the Avoided Water Capacity Cost Model in preparing their requests for ratepayer funding for measures/programs that reduce water use and thus save embedded energy.
- Energy efficiency Program Administrators (PAs) *may depart from* the Water-Energy Calculator and the Avoided Water Capacity Cost Model (collectively, tools) *defaults where the tools allow*. Where PAs depart from default values, they bear the burden of proving the departure(s) reasonable in all documents submitted to Commission Staff.
- When <u>overriding default values</u> in the Water-Energy Calculator and the Avoided Water Capacity Cost Model (collectively, tools), <u>users should continue to use</u> <u>values for a marginal supply; rather than for historical/existing supplies</u>, when using the tools in connection with anything that the Commission is reviewing in a proceeding or advice letter.

In adopting the Calculator, the CPUC allowed Users to override the following variables

- Merely changing the marginal supply of water dropdown, on the input tab of the WEN Calculator, *DOES NOT* depart from the default values because:
 - <u>All marginal supplies of water</u> documented in the Navigant Report including but not limited to recycled, groundwater, brackerish desal, and seawater desal were approved by the CPUC as defaults as dropdown selections on the input tab of the WEN Calculator.
 - The default value for water supply. "This feature allows users to enter data for a variety of marginal water supply options, e.g. recycled water with or without purple pipe, desalination, etc. This will allow users to enter marginal supply options that may be most appropriate for their local circumstances. When overriding default values, users should continue to use values for a marginal supply; rather than for historical/existing supplies."
 - IOUs would have to bear the burden of proving the departure from default values when IOUs change the default supply type percentages
 - (i.e. Seawater Desal %IOU default is 94% and IOU decides to change the IOU% to 100%).

5

• li.e. changing the energy intensity of conventional treatment from 142 kWh/AF to 300 kWh/AF)

Correctly Calculating Annual Embedded IOU Electric Energy Savings?

WEN Cost-Effectiveness Analysis Revised Final Report April 2015 Originally Overestimated Savings

Region	Annual Savings (gallons)	Equipment Cost (2016\$)	Program Admin Cost (2016\$)	Installation Cost (2016 \$)	Effective Useful Life (years)	Average Annual IOU Embedded Energy Savings (kWh)	Average Annual Non-IOU Embedded Energy Savings (kWh)	Net Present IOU Avoided Electric Embedded Energy Benefits (2014\$)	Net Present Avoided Water Capacity Benefits (2014\$)	Net Present Avoided Wastewater Capacity Benefits (2014\$)	Combined Total Resource Cost Test Result
NC	8,000	\$200	\$75	\$150	25	50.54	2.74	\$76.01	\$90.11	\$628.27	2.14
SF	8,000	\$200	\$75	\$150	25	62.83	7.52	\$91.42	\$90.11	\$628.27	2.18
CC	8,000	\$200	\$75	\$150	25	49.86	7.47	\$76.01	\$90.11	\$628.27	2.14
SC	8,000	\$200	\$75	\$150	25	53.10	38.44	\$76.01	\$90.11	\$628.27	2.14
SR	8,000	\$200	\$75	\$150	25	40.96	2.11	\$61.54	\$90.11	\$628.27	2.10
SJ	8,000	\$200	\$75	\$150	25	40.42	2.62	\$61.54	\$90.11	\$628.27	2.10
TL	8,000	\$200	\$75	\$150	25	40.09	4.95	\$61.54	\$90.11	\$628.27	2.10
NL	8,000	\$200	\$75	\$150	25	41.01	2.04	\$61.54	\$90.11	\$628.27	2.10
SL	8,000	\$200	\$75	\$150	25	49.50	16.37	\$76.01	\$90.11	\$628.27	2.14
CR	8.000	\$200	\$75	\$150	25	41.94	3.59	\$61.54	\$90.11	\$628.27	2.10

Table 20. Illustrative Example Measure Analysis Results - Optimistic Conditions

Hydrologic Region Abbreviations:

NC = North Coast, SF = San Francisco Bay, CC = Central Coast, SC = South Coast, SR = Sacramento River,

SJ = San Joaquin River, TL = Tulare Lake, NL = North Lahontan, SL = South Lahontan, CR = Colorado River

Source: Navigant analysis using the Water-Energy Calculator

WEN Cost-Effectiveness Analysis ERRATA to Revised Final Report May 2015

Region	Annual Savings (gallons)	Equipment Cost (2016 \$)	Program Admin Cost (2016\$)	Installation Cost (2016 \$)	Effective Useful Life (years)	Average Annual IOU Embedded Energy Savings (kWh)	Average Annual Non-IOU Embedded Energy Savings (kWh)	Net Present IOU Avoided Electric Embedded Energy Benefits (2014 \$)	Net Present Avoided Water Capacity Benefits (2014\$)	Net Present Avoided Wastewater Capacity Benefits (2014\$)	Combined Total Resource Cost Test Result
NC	8,000	\$200	\$75	\$150	25	18.65	1.38	\$36.15	\$90.11	\$628.27	2.03
SF	8,000	\$200	\$75	\$150	25	21.70	5.58	\$41.18	\$90.11	\$628.27	2.04
CC	8,000	\$200	\$75	\$150	25	20.60	6.28	\$36.15	\$90.11	\$628.27	2.03
SC	8,000	\$200	\$75	\$150	25	20.76	37.06	\$36.15	\$90.11	\$628.27	2.03
SR	8,000	\$200	\$75	\$150	25	15.38	1.16	\$31.44	\$90.11	\$628.27	2.02
SJ	8,000	\$200	\$75	\$150	25	15.82	1.73	\$31.44	\$90.11	\$628.27	2.02
TL	8,000	\$200	\$75	\$150	25	15.97	4.09	\$31.44	\$90.11	\$628.27	2.02
NL	8,000	\$200	\$75	\$150	25	16.54	1.16	\$31.44	\$90.11	\$628.27	2.02
SL	8,000	\$200	\$75	\$150	25	19.67	15.15	\$36.15	\$90.11	\$628.27	2.03
CR	8,000	\$200	\$75	\$150	25	14.98	2.55	\$31.44	\$90.11	\$628.27	2.02

Table ES-5. Illustrative Example Measure Analysis Results – Optimistic Conditions

Hydrologic Region Abbreviations:

NC = North Coast, SF = San Francisco Bay, CC = Central Coast, SC = South Coast, SR = Sacramento River,

SJ = San Joaquin River, TL = Tulare Lake, NL = North Lahontan, SL = South Lahontan, CR = Colorado River

Source: Navigant analysis using the Water-Energy Calculator

WEN Calculator Input Tab for High Efficiency Toilet Calculation Check

2 Measure-Specific Inputs

Note: all metrics are on a per unit basis (Example: per low-flow shower head)

Measure ID#	Measure Name	Annual Water Savings (gallons)	Measure Life (years)	Installation Year	<u>Savings</u> <u>Profile</u>	Hydrologic Region	Sector	Water Use
1	High Efficiency Toilets	8,000	20	2016	Constant	NC	Urban	Indoor
2	High Efficiency Toilets	8,000	20	2016	Constant	SF	Urban	Indoor
3	High Efficiency Toilets	8,000	20	2016	Constant	CC	Urban	Indoor
4	High Efficiency Toilets	8,000	20	2016	Constant	SC	Urban	Indoor
5	High Efficiency Toilets	8,000	20	2016	Constant	SR	Urban	Indoor
6	High Efficiency Toilets	8,000	20	2016	Constant	SJ	Urban	Indoor
7	High Efficiency Toilets	8,000	20	2016	Constant	TL	Urban	Indoor
8	High Efficiency Toilets	8,000	20	2016	Constant	NL	Urban	Indoor
9	High Efficiency Toilets	8,000	20	2016	Constant	SL	Urban	Indoor
10	High Efficiency Toilets	8,000	20	2016	Constant	CR	Urban	Indoor

WEN Calculator Output Tab for High Efficiency Toilet Calculation Check

	Note: all metrics are on a per ur	nit basis (Example: pe	r low-flow shower hea	d)		
		Average Annual	Average Annual Embedded	Average Annual	Avoided IOU	Avoided G
Measure		Embedded IOU	Non-IOU	Embedded	Electric Energy	Energy Co
ID#	Measure Name	Electric Energy	Electric Energy	Gas Energy	Cost (2014 \$)	(2014\$)
1	High Efficiency Toilets	18.65	1.38	-	\$31.49	\$
2	High Efficiency Toilets	21.70	5.58	-	\$35.86	\$
3	High Efficiency Toilets	20.60	6.28	-	\$31.49	\$
4	High Efficiency Toilets	20.76	37.06	-	\$31.49	\$
5	High Efficiency Toilets	15.38	1.16	-	\$27.38	\$
6	High Efficiency Toilets	15.82	1.73	-	\$27.38	\$
7	High Efficiency Toilets	15.97	4.09	-	\$27.38	\$
8	High Efficiency Toilets	16.54	1.16	-	\$27.38	\$
9	High Efficiency Toilets	19.67	15.15	-	\$31.49	\$
10	High Efficiency Toilets	14.98	2.55	-	\$27.38	\$
11		7 -	-	-	-	-
12		-	-	-	-	-
13		-	-	-	-	-
14		-	-	-	-	-
15		-	-	-	-	-
16		-	-	-	-	-
17		-	-	-	-	-
18		-	-	-	-	-
19	/	-	-	-	-	-
20		-	-	-	-	-

Matches ERRATA Revised Final Report May 2015 Values on slide 8

WEN Calculator Good Right?

NO!

WEN Calculator Usage Reconsideration

WEN Cost-Effectiveness Analysis ERRATA to Revised Final Report May 2015 Underestimates Savings for Indoor Water Use Measures How?

			010 20 011		in pre nie			pumisue conu			
Region	Annual Savings (gallons)	Equipment Cost (2016 \$)	Program Admin Cost (2016\$)	Installation Cost (2016 \$)	Effective Useful Life (years)	Ave age Annu il IOU Emb dded Eni rgy Sav ngs (kl /h)	Average Annual Non-IOU Embedded Energy Savings (kWh)	Net Present IOU Avoided Electric Embedded Energy Benefits (2014 \$)	Net Present Avoided Water Capacity Benefits (2014\$)	Net Present Avoided Wastewater Capacity Benefits (2014\$)	Combined Total Resource Cost Test Result
NC	8,000	\$200	\$75	\$150	25	18.65	1.38	\$36.15	\$90.11	\$628.27	2.03
SF	8,000	\$200	\$75	\$150	25	21.70	5.58	\$41.18	\$90.11	\$628.27	2.04
CC	8,000	\$200	\$75	\$150	25	20.60	6.28	\$36.15	\$90.11	\$628.27	2.03
SC	8,000	\$200	\$75	\$150	25	20.76	37.06	\$36.15	\$90.11	\$628.27	2.03
SR	8,000	\$200	\$75	\$150	25	15.38	1.16	\$31.44	\$90.11	\$628.27	2.02
SJ	8,000	\$200	\$75	\$150	25	15.82	1.73	\$31.44	\$90.11	\$628.27	2.02
TL	8,000	\$200	\$75	\$150	25	15.97	4.09	\$31.44	\$90.11	\$628.27	2.02
NL	8,000	\$200	\$75	\$150	25	16.54	1.16	\$31.44	\$90.11	\$628.27	2.02
SL	8,000	\$200	\$75	\$150	25	19.67	15.15	\$36.15	\$90.11	\$628.27	2.03
CR	8,000	\$200	\$75	\$150	25	14.98	2.55	\$31.44	\$90.11	\$628.27	2.02

Table ES-5. Illustrative Example Measure Analysis Results - Optimistic Conditions

Hydrologic Region Abbreviations:

NC = North Coast, SF = San Francisco Bay, CC = Central Coast, SC = South Coast, SR = Sacramento River,

SJ = San Joaquin River, TL = Tulare Lake, NL = North Lahontan, SL = South Lahontan, CR = Colorado River

Source: Navigant analysis using the Water-Energy Calculator

- In adopting the Calculator, the CPUC allowed Users to override the resource balance year (e.g. 2016).
 - "2016 is a reasonable choice for the resources balance year as water agencies and utilities are currently facing choices about where and how they will produce water supply."
- The WEN Calculator <u>incorrectly uses Historical Supply</u> <u>Information</u> to calculate Annual Embedded IOU Electric Energy Savings <u>because it pulls in the wrong Resource</u> <u>balance year</u> (e.g. 2014 instead of 2016).

- Incorrectly uses Historical Supply Information to calculate Annual Embedded IOU Electric Energy Savings for <u>Indoor</u> <u>Water Use Measures because it pulls in the wrong Resource</u> <u>balance year.</u>
 - Input tab shows installation year: 2016
 - WEN Calculator pulls historical supply information assuming the installation year is <u>before</u> 2016 (pulls 2014 data instead of 2016).
 - Resulting in <u>lower</u> Annual Embedded IOU Electric Energy savings because the WEN Calculator is pulling the historical average energy intensities (EI) and not the marginal electric EI by measure intensities.

al.	A B	С	D	E	F	G	Н		J	К	L	M	Resource Balar Year should be
Mo	onthly Marginal	El by Meas	sure	Res	source Bala	nce Year	2016	\leftarrow					
2													2016 per the
;	Units: kWh//	٩F	Measure ID#										formula
+	Year	Month	1	2	3	4	5	6	7	8	9	10	
i i	2014	January	760	004	839	845	626	644	650	674	801	610	
	2014	February	760	884	839	945	626	644	650	674	801	610	However, base
	2014	March	760	884	839	845	626	644	650	674	801	610	on the final
	2014	April	760	884	839	845	626	644	650	674	801	610	
	2014	May	760	884	839	845	626	644	650	674	001	610	output, the W
	2014	June	760	884	839	845	626	644	650	674	801	610	calculator is
	2014	July	760	884	839	845	626	644	650	674	801	610	pulling from t
	2014	August	760	884	839	845	626	644	650	674	801	610	historical supp
	2014	Septemb	760	884	839	845	626	644	650	674	801	610	of 760 and no
	2014	October	760	884	839	845	626	644	650	674	801	610	1,049 kWh/AF
	2014	Novembe	760	884	839	845	626	644	650	674	801	610	1,049 KWII/Ar
	2014	Decembe	760	884	839	845	626	644	650	674	801	610	
	2015	January	760	884	839	845	626	644	650	674	201	610	
	2015	February	760	884	839	845	626	644	650	674	801	610	
	2015	March	760	884	839	845	626	644	650	674	801	610	
	2015	April	760	884	839	845	626	644	850	674	801	610	
	2015	May	760	884	839	845	626	644	650	674	801	610	
	2015	-	760	884	839	845	626	644	650	674	801	610	
	2015	July	760	884	839	845	62.0	644	650	674	801	610	Calculator sho
	2015	August	760	884	839	845	626	644	650	674	801	610	be pulling 201
		Septemb	760	884	839	645	626	644	650	674	801	610	data instead
		October	760	884	825	845	626	644	650	674	801	610	because the
	2015	Novembe	760	884	839	845	626	644	650	674	801	610	resource bala
		Decembe		684	839	845	626	644	650	674	801	610	
		January	1.049	1,195	1,049	1.049	912	912	012	312	1,049	912	years is 2016 a
		Fernany		1,195	1,049	1,049	912	912	912	912	1,049	912	not 2014
		March	1,049	1,195	1,049	1,049	912	912	912	912	1,049	912	
2	2016		1,049	1,195	1,049	1.049	912	912	912	912	1.049	912	

Water Savir	ngs Profiles		Click to Return to	Inputs tab				
Month	Constant	Irrigation	Cooling Tower	Custom 1	Custom 2	Custom 3	Custom 4	Custom 5
January	8.3%	3.2%	3.0%					
February	8.3%	2.5%	3.1%					
March	8.3%	4.2%	3.8%	þ				
April	8.3%	8.7%	8.2%	þ				
May	8.3%	12.0%	12.1%					
June	8.3%	15.4%	11.9%					
July	8.3%	14.5%	10.8%					
August	8.3%	12.8%	15.1%					
September	8.3%	11.5%	13.8%					
October	8.3%	8.9%	10.0%					
November	8.3%	6.6%	7.1%					
December	8.3%	1.8%	3.0%					
	Source: CSA (2012)							
Total Check			Check that Values Add to 100%	Values must add up to 100%	Value, must add up to 100%			

When calculating embedded energy savings, the WEN Calculator should only use water savings profiles when the resource balance year is 2014 or 2015.

However, despite an install year of 2016, the formulas used to estimate embedded energy incorrectly includes the water savings profile.

	А	В	С	D	E	F	G	Н	I	J	K	L	Μ
1 Av	erage Embedde	d Electrica	l Energy in	n Water Savir	igs by Meas	ure							
2													
3 Uni	its: kWh												
4				Measure ID#									
5 IO	U vs. Non-IOU	Year	Month	1	2	3	4	5	6	7	8	9	10
6 IOI	U	2014	January	1.55	1.81	1.72	1.73	1.28	1.32	1.33	1.38	1.64	1.25
7 101	U	2014	February	1.55	1.81	1.72	1.73	1.28	1.32	1.33	1.38	1.64	1.25
8 101	U	2014	March	1.55	1.81	1.72	1.73	1.28	1.32	1.33	1.38	1.64	1.25
9 101	U	2014	April	1.55	1.81	1.72	1.73	1.28	1.32	1.33	1.38	1.64	1.25
0 101	U	2014	May	1.55	1.81	1.72	1.73	1.28	1.32	1.33	1.38	1.64	1.25
1 101	U	2014	June	1.55	1.01	1.72	1.72	1.28	1.22	1.22	1.29	1.64	1.05
2 101	U	2014	J-1y	1.55	1.81	1.72	1.73	1.28	1.32	1.33	1.38	1.64	1.25
.3 IOI	U	2014	August	1.55	1.81	1.72	1.73	1.28	1.32	1.33	1.38	1.64	1.25
.4 IO	U	2014	. Se <mark>r</mark> tembe	1.55	1.81	1.72	1.73	1.28	1.32	1.33	1.38	1.64	1.25
15 IO	U	2014	Oct ber	1.55	1.81	1.72	1.73	1.28	1.32	1.33	1.38	1.64	1.25
.6 IOI	U	2014	Novembe	1.55	1.81	1.72	1.73	1.28	1.32	1.33	1.38	1.64	1.25
.7 IOI	U	2014	Decen ber	1.55	1.81	1.72	1.73	1.28	1.32	1.33	1.38	1.64	1.2
18 No	n-IOU	2014	January	0.12	0.46	0.52	3.09	0.10	0.14	0.34	0.10	1.26	0.1
19 No	n-IOU	2014	Februaiy	0.12	0.46	0.52	3.09	0.10	0.14	0.34	0.10	1.26	<mark>7</mark> .21
20 No	n-IOU	2014	March	0.12	0.46	0.52	3.09	0.10	0.14	0.34	0.10	1.26	0.21
21 No:	n-IOU	2014	April	0.12	0.46	0.52	3.09	0.10	0.14	0.34	0.10	1.26	0.21
	n-IOU		May	0.12	0.46	0.52	3.09	0.10	0.14	0.34	0.10		0.21
	Information	Inputs 🖉 V	Vater IOU Da	ta 🤇 Glossary 🔏	Summary Out	tputs 🔪 Avg E	mbedded Elect	tric Svgs 🖉 🗛	vg Embedded G				
ady		Inputs / v			Summary Out		Inbedded Liec		vq Embedded G		Average: 1.55	Count: 12 Sum:	18.65 🎟 🗆

WEN Calculator sums up the monthly average embedded electrical energy for the wrong resource balance year (2014 instead of 2016)

The WEN should be summing 2016 monthly Electric Energy Savings data not summing 2014 Electric Energy Savings data as shown here. The sum matches the output values shown in slides 10 and 12.

- Embedded Energy Savings (kWh) for Indoor Urban High
 Efficiency Toilets using Recycled Water (RW) Marginal Supply
 - 8,000 gallons saved*
 - (1/325,851 AF/gallon) *
 - 8.3% constant load profile (2014 data)*
 - 760 kWh/AF (2014 Monthly Energy Intensity data)*
 - 12 Months

END RESULT = 18.6 kWh Annual Embedded Energy Savings (same as output on the Navigant Report and output on the WEN Calculator)

Theoretical Calculations for Annual IOU Embedded Electric Energy

• Embedded Energy Savings (kWh) =

- Gallons saved *
- conversion from gallons to Acre Feet *
- Marginal Supply Energy Intensity (kWh/AF)

Sample Calculation Annual IOU Embedded Electric Energy for High Efficiency Toilet

- Embedded Energy Savings (kWh) =
- 8,000 Gallons saved *(1 AF/325,851 gallons)* 1,049 kWh/AF (Marginal Supply EI of Recycled Water for North Coast Hydro Region)
 - **25.7 kWh** Annual IOU Embedded Electric Energy Savings
- The WEN Calculator is reporting 18.6 kWh based on incorrect assumptions including resource balance year, average energy intensities and water savings profiles not applicable to the calculation.
- The WEN Calculator is not correctly calculating the embedded savings because it is pulling the average energy intensities and not the marginal electric EI by measure intensities due to the incorrect resource balance year.

Overestimates Savings for Outdoor Water Use Measures

Issue 2: Overestimates Savings for Outdoor Water Use Measures

- Embedded Energy Savings (kWh) for Outdoor Irrigation Soil Moisture Sensor (each; < 1 acre) using Recycled Water (RW) Marginal Supply and Conventional Treatment for RW
 - 13,490 gallons saved*
 - (1/325,851 AF/gallon) *
 - [irrigation load profile changes based on month (2014 data)]*
 - **354** kWh/AF (2014 Monthly Energy Intensity data for North Coast)

END RESULT =

0.47+0.36+0.61+1.28+1.76+1.97+2.12+1.88+1.68+1.3+0.96+0.26 kWh **END RESULT** = 14.66 kWh Annual Embedded Energy Savings

WEN Calculator Input Tab for Soil Moisture Sensor (each; < 1 acre) Calculation Check

Measure-Specific Inputs

Note: all metrics are on a per unit basis (Example: per low-flow shower head)

Measure ID#	Measure Name	Annual Water Savings (gallons)	Measure Life (years)	Installation Year	<u>Savings</u> <u>Profile</u>	Hydrologic Region	Sector	Water Use
	l Soil Moisture Sensor (each; < 1 acre)	13,490	10	2016	Irrigation	NC	Urban	Outdoor
1	2 Soil Moisture Sensor (each; < 1 acre)	13,490	10	2016	Irrigation	SF	Urban	Outdoor
:	Soil Moisture Sensor (each; < 1 acre)	13,490	10	2016	Irrigation	CC	Urban	Outdoor
4	4 Soil Moisture Sensor (each; < 1 acre)	13,490	10	2016	Irrigation	SC	Urban	Outdoor
!	Soil Moisture Sensor (each; < 1 acre)	13,490	10	2016	Irrigation	SR	Urban	Outdoor
(Soil Moisture Sensor (each; < 1 acre)	13,490	10	2016	Irrigation	SJ	Urban	Outdoor
	Soil Moisture Sensor (each; < 1 acre)	13,490	10	2016	Irrigation	TL	Urban	Outdoor
1	Soil Moisture Sensor (each; < 1 acre)	13,490	10	2016	Irrigation	NL	Urban	Outdoor
9	Soil Moisture Sensor (each; < 1 acre)	13,490	10	2016	Irrigation	SL	Urban	Outdoor
1	Soil Moisture Sensor (each; < 1 acre)	13,490	10	2016	Irrigation	CR	Urban	Outdoor

1

WEN Calculator Input Tab for Soil Moisture Sensor (each; < 1 acre) Calculation Check

Average Embedded Energy and Avoided Cost of Embedded Energy

Note: all metrics are on a per unit basis (Example: per low-flow shower head)

		Average	Average Annual	Average		
		Annual	Embedded	Annual	Avoided IOU	Avoided Gas
Measure		Embedded IOU	Non-IOU	Embedded	Electric Energy	Energy Cost
ID#	Measure Name	Electric Energy	Electric Energy	Gas Energy	Cost (2014 \$)	(2014\$)
1	Soil Moisture Sensor (each; < 1	14.66	1.81	-	\$21.80	\$ -
2	Soil Moisture Sensor (each; < 1	19.80	8.88	-	\$26.74	\$ -
3	Soil Moisture Sensor (each; < 1	17.94	10.07	-	\$21.80	\$ -
4	Soil Moisture Sensor (each; < 1	18.20	61.97	-	\$21.80	\$-
5	Soil Moisture Sensor (each; < 1	9.13	1.44	-	\$17.16	\$ -
6	Soil Moisture Sensor (each; < 1	9.88	2.40	-	\$17.16	\$ -
7	Soil Moisture Sensor (each; < 1	10.13	6.37	-	\$17.16	\$ -
8	Soil Moisture Sensor (each; < 1	11.10	1.44	-	\$17.16	\$ -
9	Soil Moisture Sensor (each; < 1	16.38	25.02	-	\$21.80	\$ -
10	Soil Moisture Sensor (each; < 1	8.46	3.78	-	\$17.16	\$-
11		-	-	-	-	-
12		-	-	-	-	-
13		-	-	-	-	-
14		-	-	-	-	-
15		-	-	-	-	-
16		-	-	-	-	-
17		-	-	-	-	-
18		-	-	-	-	-
19		-	-	-	-	-
20		-	-	-	-	-
Total		135.68	123.19	-	\$ 199.74	\$ -

WEN Calculator Usage Reconsideration

Sample Calculation Annual IOU Embedded Electric Energy for Soil Moisture Sensor (each; < 1 acre)

• Embedded Energy Savings (kWh) =

• 13,490 Gallons saved *(1 AF/325,851 gallons)* 155 kWh/AF (Marginal Supply EI of **Recycled Water** for North Coast Hydro Region)

- **6.42 kWh** Annual IOU Embedded Electric Energy Savings
- The WEN Calculator is reporting 14.66 kWh based on incorrect assumptions to include conventional tertiary treatment as part of potable treatment for recycled water resulting in overestimated El's for outdoor use measures.
- The WEN Calculator is not correctly calculating the embedded savings because it is pulling the average energy intensities and water savings profiles and not the marginal electric EI by measure intensities due to the incorrect resource balance year selection being hard coded.

Sample Calculation Annual IOU Embedded Electric Energy for Soil Moisture Sensor (each; < 1 acre)

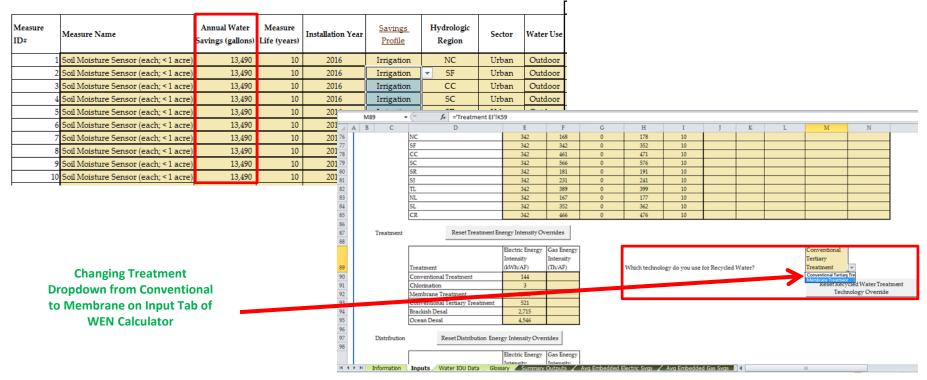
- Embedded Energy Savings (kWh) =
- 13,490 Gallons saved *(1 AF/325,851 gallons)* 260kWh/AF (Marginal Supply El of **Groundwater** for North Coast Hydro Region)
- **10.76 kWh** Annual IOU Embedded Electric Energy Savings
- The WEN Calculator reports 14.66 kWh despite changing the marginal supply to Groundwater based on incorrect assumptions including resource balance year, average energy intensities and water savings profiles not applicable to the calculation.
- The WEN Calculator is not correctly calculating the embedded savings because it is pulling the average energy intensities and not the marginal electric EI by measure intensities due to the incorrect resource balance year.

Underestimates Savings when Changing Treatment from Conventional to Membrane

Issue 3: Underestimates Savings when Changing Treatment from Conventional to Membrane

- Embedded Energy Savings (kWh) for Outdoor Irrigation Soil Moisture Sensor (each; < 1 acre) using Recycled Water Marginal Supply and changes to Conventional Treatment to Membrane Treatment
 - 13,490 gallons saved*
 - (1/325,851 AF/gallon) *
 - [irrigation load profile changes based on month (2014 data)]*
 - **504** kWh/AF (2014 Monthly Energy Intensity data for North Coast)

END RESULT =


0.67+0.51+0.87+1.82+2.50+2.81+3.02+2.68+2.40+1.86+1.37+0.37 kWh

END RESULT = 20.86 kWh Annual Embedded Energy Savings

WEN Calculator Input Tab for Soil Moisture Sensor (each; < 1 acre) Calculation Check

2 Measure-Specific Inputs

Note: all metrics are on a per unit basis (Example: per low-flow shower head)

WEN Calculator Usage Reconsideration

1

WEN Calculator Input Tab for Soil Moisture Sensor (each; < 1 acre) Calculation Check

Average Embedded Energy and Avoided Cost of Embedded Energy

Note: all metrics are on a per unit basis (Example: per low-flow shower head)

		Average	Average Annual	Average		
		Annual	Embedded	Annual	Avoided IOU	Avoided Gas
Measure		Embedded IOU	Non-IOU	Embedded	Electric Energy	Energy Cost
ID#	Measure Name	Electric Energy	Electric Energy	Gas Energy	Cost (2014 \$)	(2014\$)
1	Soil Moisture Sensor (each; < 1	20.86	2.21	-	\$46.70	\$ -
2	Soil Moisture Sensor (each; < 1	20.78	8.94	-	\$51.64	\$-
3	Soil Moisture Sensor (each; < 1	20.46	10.23	-	\$46.70	\$-
4	Soil Moisture Sensor (each; < 1	21.24	62.16	-	\$46.70	\$-
5	Soil Moisture Sensor (each; < 1	15.28	1.83	-	\$42.07	\$-
6	Soil Moisture Sensor (each; < 1	16.97	2.85	-	\$42.07	\$-
7	Soil Moisture Sensor (each; < 1	13.66	6.60	-	\$42.07	\$-
8	Soil Moisture Sensor (each; < 1	21.47	2.10	-	\$42.07	\$-
9	Soil Moisture Sensor (each; < 1	21.09	25.32	-	\$46.70	\$-
10	Soil Moisture Sensor (each; < 1	11.81	4.00	-	\$42.07	\$-
11		-	-	-	-	-
12		-	-	-	-	-
13		-	-	-	-	-
14		-	-	-	-	-
15		-	-	-	-	-
16		-	-	-	-	-
17		-	-	-	-	-
18		-	-	-	-	-
19		-	-	-	-	-
20		-	-	-	-	-
Total		183.63	126.25	-	\$ 448.80	\$-

WEN Calculator Input Tab for Soil Moisture Sensor (each; < 1 acre) Calculation Check

	Н		J	К	L	M	N	0	Р	0	В	S	Т	U	V	V	X	Y	Z
Е		Extraction a	and Conveyanc	e							Tr	eatment							
L				Local		CVP and							Local		CVP and				
L		Ground y ate	Local	Imported		Other		Seawater	Brackish		Ground v ate	Local	Imported		Other		Seawater	Brackish	Recy
L	Water	r	Deliveries	Deliveries	CRA	Federal	S₩P	Desal	Desal	₩ater	r	Deliveries	Deliveries	CRA	Federal	S₩P	Desal	Desal	₩a
L	-	105	3	3	-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	153	153	
	-	208	3		-	-	-	4,213	2,552	1,225	3		136	136	136	136	299	299	
	-	278	3		-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	153	153	
	-	340	3		-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	153	153	
	-	113	3		-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	17	17	
	-	142	3		-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	17	17	
	-	235	3		-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	17	17	
	-	104	3		-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	17	17	
	-	214	3		-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	153	153	
	-	281	3		-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	17	17	
	-	105	3		-	-	-	4,273	2,552	1,225	-	-	-	-	-	-	153	153	
	-	208	3		-	-	-	4,273	2,552	1,225	-	-	-	-	-	-	299	299	
	-	278	3		-	-	-	4,273	2,552	1,225	-	-	-	-	-	-	153	153	
	-	340	3		-	-	-	4,273	2,552	1,225	-	-	-	-	-	-	153	153	
	-	113	3		-	-	-	4,273	2,552	1,225	-	-	-	-	-	-	17	17	
	-	142	3		-	-	-	4,273	2,552	1,225	-	-	-	-	-	-	17	17	
	-	235	3		-	-	-	4,273	2,552	1,225	-	-	-	-	-	-	17	17	
	-	104	3		-	-	-	4,273	2,552	1,225	-	-	-	-	-	-	17	17	
	-	214	3		-	-	-	4,273	2,552	1,225	-	-	-	-	-	-	153	153	
	-	281	3	-	-	-	-	4,273	2,552	1,225	-	-	-	-	-	-	17	17	
	-	105	3	3	-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	153	153	
	-	208	3	12	-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	299	299	
	-	278	3		-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	153	153	
	-	340	3		-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	153	153	
	-	113	3		-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	17	17	
	-	142	3		-	-	-	4,273	2,552	1,225	3	136	136	136	136	136	17	17	
)		C Water Capac	ity 🖌 AC W	W Canacity 🖌	Env Be	enefits Ma	ra Elec EI	by Measure	All EI 🖉 M	Ionthly Water	Svas En	v Ben 🖌 Wat	14			1111	_		

The correct sum of outdoor El's = Extraction and Conveyance, Treatment and Distribution should be 1,379 kWh/AF (0+1,225+153) for Membrane Treatment.

Sample Calculation Annual IOU Embedded Electric Energy for Soil Moisture Sensor (each; < 1 acre)

- Embedded Energy Savings (kWh) =
- 13,490 Gallons saved *(1 AF/325,851 gallons)* 1,379 kWh/AF (Marginal Supply El of **Recycled Water** for North Coast Hydro Region)
 - **57.08 kWh** Annual IOU Embedded Electric Energy Savings
- The WEN Calculator is reporting 20.86 kWh based on incorrect assumptions including resource balance year, average energy intensities and water savings profiles not applicable to the calculation.
- The WEN Calculator is not correctly calculating the embedded savings because it is pulling the average energy intensities and not the marginal electric EI by measure intensities due to the incorrect resource balance year.

Non-IOU Energy Intensities for 2 Hydro Zones Appear Significantly High

Issue 4: Non-IOU Energy Intensities for 2 Hydro Zones Appear Significantly High

	А	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р
1	Historica	d Energy I	Intensity													
2																
3	Model D)ata														
4																
5	Electric l	Energy In	tensity (l	«Wh/AF)					Extraction + Conv	eyance, Trea	tment, and Dist	ribution				
											Local					
			Urban	Indoor vs.	IOU vs.	Seawater	Brackish	Recycled		Local	Imported		CVP and Other		ww	
6	Region	Year	vs. Ag	Outdoor	Non-IOU	Desal	Desal	Water	Groundwater	Deliveries	Deliveries	CRA	Federal Deliveries	SWP	Systems	Total
47	NC	2014	Urban	Indoor	Non-IOU	-	-	8	24	7	0	-	4	-	13	56
48	SF	2014	Urban	Indoor	Non-IOU	0	1	2	31	5	22	-	37	116	13	227
49	CC	2014	Urban	Indoor	Non-IOU	-	-	3	161	1	-	-	20	58	13	256
50	SC	2014	Urban	Indoor	Non-IOU	-	4	4	76	1	1	531	0	879	13	1,509
51	SR	2014	Urban	Indoor	Non-IOU	-	-	7	16	5	-	-	7	0	137	47
52	SJ	2014	Urban	Indoor	Non-IOU	-	-	8	31	5	0	-	14	1	13	71
53	TL	2014	Urban	Indoor	Non-IOU	-	-	4	82	3	0	-	28	38	13	167
54	NL	2014	Urban	Indoor	Non-IOU	-	-	11	16	7	-	-	-	-	13	47
55	SL	2014	Urban	Indoor	Non-IOU	-	-	6	101	2	-	-	-	,5	13	617
56	CR	2014	Urban	Indoor	Non-IOU	-	-	4	17	0	-	8	-	63	157	104

Hydro Zones SC and SL have significantly higher kWh/AF Energy Intensities compared to the other 8 hydro zones

Issue 4: Non-IOU Energy Intensities for 2 Hydro Zones Appear Significantly High

]	Average Embedded Energy and	l Avoided Cost of Er	nbedded Energy			
	Note: all metrics are on a per u	nit basis (Example: p	er low-flow shower ł	nead)		
		Average Annual	Average Annual			
		Embedded IOU	Embedded	Average Annual	Avoided IOU	Avoided Gas
		Electric Energy	Non-IOU Electric	Embedded Gas	Electric Energy	Energy Cost
Measure ID#	Measure Name	(kWh)	Energy (kWh)	Energy (therms)	Cost (2014\$)	(2014\$)
1	High Efficiency Toilets	18.65	1.38	-	\$31.49	s -
2	High Efficiency Toilets	21.70	5.58	-	\$35.86	\$ -
3	High Efficiency Toilets	20.60	6.28	-	\$31.49	\$ -
4	High Efficiency Toilets	20.76	37.06	-	\$31.49	\$ -
5	High Efficiency Toilets	15.38	1.16	-	\$27.38	\$ -
6	High Efficiency Toilets	15.82	1.73	-	\$27.38	\$ -
7	High Efficiency Toilets	15.97	4.09	-	\$27.38	\$ -
8	High Efficiency Toilets	16.54	1.16	-	\$27.38	\$ -
9	High Efficiency Toilets	19.67	15.15	-	\$31.49	\$ -
10	High Efficiency Toilets	14.98	2.55	-	\$27.38	\$ -
11		i – – – – – – – – – – – – – – – – – – –		i l		1

Significantly Higher Energy Intensities for Hydro Zones SC and SL compared to the other 8 hydro zones regardless of marginal supply results in **HIGHER** Annual Embedded **Non-IOU** Electric Energy Savings (kWh) **BUT NOT HIGHER** Annual Embedded **IOU** Electric Energy Savings (kWh). That doesn't seem right.

	D4	15	• (* <i>f</i> x	Recycled Wa	ater						
a A	A B	С	D		E	F	G	Н		J	K
8			High Efficiency Toilets		8,000	20	2016	Constant	TL	Urban	Indoor
9			High Efficiency Toilets		8,000	20	2016	Constant	NL	Urban	Indoor
0		9	High Efficiency Toilets		8,000	20	2016	Constant	SL	Urban	Indoor
1			High Efficiency Toilets		8,000	20	2016	Constant	CR	Urban	Indoor
2		11									
3 4		12									
4 5		13									
6		15									
7		16									
8		17									
9		18									
0		19									
1		20									
2 3											
:4 :5 :6	3	Click this	button to calculate	esults:	Ru	n	Note: Results w	ill not refresh auto	matically; you i	must press the	e "Run" bu
7 8 9 0	4	Optional	Override Opportuniti		•			ell in this section. ' default will result in	-		
1 2 3		Marginal sup	ply for each hydrologic re	gion:		arginal Suppl verrides	У				
4		Region	Supply Typ	e (
5		NC	Recycled Wat	er 🗸 🔻		lr	nput tab sl	howing Re	cycled W	'ater (RV	V) as
6		SF	Recycled Wat	er		tł	he default	marginal	supply wi	ith a dro	woba
7		CC	Recycled Wa	er	\leftarrow			-			
8		SC	Recycled Wat	er				users to ch			J
9		SR	Recycled Wat	er		a	nother ma	arginal sup	ply of wa	ater.	
0		SJ	Recycled Wat	er							
4.)	► E	Information	n Inputs Wate	er IOU Data 🏑	Glossary			Avg Embed		- / .	

1

Average Embedded Energy and Avoided Cost of Embedded Energy

Note: all metrics are on a per unit basis (Example: per low-flow shower head)

		Average	Average Annual	Average			
		Annual	Embedded	Annual	Avoided IOU	Avoided Gas	
Measure		Embedded IOU	Non-IOU	Embedded	Electric Energy	Energy Cost (2014 \$)	
ID#	Measure Name	Electric Energy	Electric Energy	Gas Energy	Cost (2014 \$)		
1	High Efficiency Toilets	18.65	1.38	-	\$31.49	\$ -	
2	High Efficiency Toilets	21.70	5.58	-	\$35.86	\$ -	
3	High Efficiency Toilets	20.60	6.28	-	\$31.49	\$ -	
4	High Efficiency Toilets	20.76	37.06	-	\$31.49	\$ -	
5	High Efficiency Toilets	15.38	1.16	-	\$27.38	\$ -	
6	High Efficiency Toilets	15.82	1.73	-	\$27.38	\$-	
7	High Efficiency Toilets	15.97	4.09	-	\$27.38	\$ -	
8	High Efficiency Toilets	16.54	1.16	-	\$27.38	\$-	
9	High Efficiency Toilets	19.67	15.15	-	\$31.49	\$ -	
10	High Efficiency Toilets	14.98	2.55	-	\$27.38	\$-	
11		-	-	-	-	-	
12		-	-	-	-	-	
13		-	-	-	-	-	
14		-	-	-	-	-	
15		-	-	-	-	-	
16		-	-	-	-	-	
17		-	-	-	-	-	
18		-	-	-	-	-	
19		-	-	-	-	-	
20		-	-	-	-	-	
Total		180.06	76.14	-	\$ 298.71	\$-	

Results of using the default Recycled Water (RW) marginal supply of water. Changing the Marginal Supply from the default of RW to Groundwater **should increase BOTH** Avoided Costs and Embedded Energy Savings because the Eis are higher for groundwater

				_								
- A	A B	С	7	D ah Efficiency Toilets		E 8,000	F 20	G 2016	H Constant	TL	J Urban	K Indoor
18 19				gh Efficiency Toilets		8,000	20	2016		NL	Urban	
20				gh Efficiency Toilets		8,000	20	2016	Constant Constant	SL	Urban	Indoor Indoor
20				gh Efficiency Toilets		8,000	20	2016	Constant		Urban	Indoor
22			11	gh Efficiency Tollets		0,000	20	2016	Constant	Un	Urban	Indoor
23			12									
4			13									
25			14									
26			15									
27			16									
28			17									
29			18									
30			19									
31			20									
32												
33												
33 34		Click	thic b	ttep to calculate	roculte:			loto: Pocultawi	ll pot rofroch puto	matically: your	pust proce the	"Pup" bu
)3)4)5	3	Click	this bu	itton to calculate	results:	Run	1	Note: Results wi	ll not refresh auto	matically; you r	must press the	e "Run" bu
33 34 35 36	3	Click	this bu	itton to calculate	results:	Run	м Г	Note: Results wi	ll not refresh auto	matically; you r	nust press the	e "Run" bu
13 14 15 16	3	Click	this bu	itton to calculate	results:	Run	۲ ۲	Note: Results wi	ll not refresh auto	matically; you r	must press the	• "Run" bu
13 14 15 16 17	3	_		itton to calculate erride Opportunit		Run You may overwrite					-	
3 4 5 6 7 8		_			ies:		e any value in a	a highlighted ce	ell in this section. ¹	Values original	ly displayed a	re the defa
33 34 35 36 37 38 39 40		_			ies:	You may overwrite Leaving a cell blar	e any value in a	a highlighted co Ily displayed a c	ell in this section. ¹	Values original	ly displayed a	re the defa
33 34 35 36 37 38 39 40 41		Optic	onal Ov		ies:	You may overwrite Leaving a cell blar Reset Ma	e any value in a nk that origina urginal Supply	a highlighted co Ily displayed a c	ell in this section. ¹	Values original	ly displayed a	re the defa
		Optic	onal Ov	erride Opportunit	ies:	You may overwrite Leaving a cell blar Reset Ma	e any value in a	a highlighted co Ily displayed a c	ell in this section. ¹	Values original	ly displayed a	re the defa
33 34 35 36 37 38 39 40 41		Optic	onal Ov	erride Opportunit	i es: egion:	You may overwrite Leaving a cell blar Reset Ma	e any value in a nk that origina urginal Supply	a highlighted co Ily displayed a c	ell in this section. ¹	Values original	ly displayed a	re the defa
33 34 35 36 37 38 39 40 41 42 43		Optic Margina	onal Ov	erride Opportunit for each hydrologic r	ies: egion: pe	You may overwrite Leaving a cell blar Reset Ma	e any value in a nk that origina urginal Supply	a highlighted co Ily displayed a c	ell in this section. ¹	Values original	ly displayed a	re the defa
33 34 55 36 37 88 39 40 11 12 33 44 55		Optic Margina Region	onal Ov	erride Opportunit for each hydrologic r Supply Tyj	ies: egion: pe	You may overwrite Leaving a cell blar Reset Ma	e any value in a nk that origina urginal Supply	a highlighted co Ily displayed a c	ell in this section. ¹	Values original	ly displayed a	re the defa
33 34 35 36 37 38 39 40 11 42 33 44 35 46		Optic Margina Region NC	onal Ov	erride Opportunit for each hydrologic r Supply Tyr Recycled Wa	ies: egion: pe ater ater	You may overwrite Leaving a cell blar Reset Ma	e any value in a nk that origina urginal Supply	a highlighted co Ily displayed a c	ell in this section. ¹	Values original	ly displayed a	re the defa
33 34 35 36 37 38 39 40 11 12 13 14 15 16 17		Optic Margina Region NC SF CC SC	al supply	erride Opportunit for each hydrologic r Supply Ty Recycled Wa Recycled Wa Recycled Wa	ies: egion: pe ater ater	You may overwrite Leaving a cell blar Reset Ma Ow	e any value in a nk that origina urginal Supply	a highlighted co Ily displayed a c	ell in this section. ¹	Values original	ly displayed a	re the defa
33 34 35 36 37 38 39 40 11 12 33 44 45 5 46 47 48		Optic Margina Region NC SF CC SC	al supply	erride Opportunit for each hydrologic r Supply Tyr Recycled Wa Recycled Wa Recycled Wa	ies: egion: pe ater ater	You may overwrite Leaving a cell blar Reset Ma Ow	e any value in a nk that origina urginal Supply	a highlighted co Ily displayed a c	ell in this section. ¹	Values original	ly displayed a	re the defa
33 34 35 36 37 38 39 40 11 12 13 14 15 16 17 18 19		Optic Margina NC SF CC SC SR	al supply	erride Opportunit for each hydrologic r Supply Tyj Recycled Wa Recycled Wa Recycled Wa	ies: egion: pe ater ater	You may overwrite Leaving a cell blar Reset Ma Ow	e any value in a nk that origina urginal Supply	a highlighted co Ily displayed a c	ell in this section. ¹	Values original	ly displayed a	re the defa
33 34 35 36 37 38 39 40 11 12 13 14 15 16 17 18		Margina Region NC SF CC SC SR SJ	al supply	erride Opportunit for each hydrologic r Supply Tyj Recycled Wa Recycled Wa Recycled Wa	ies: egion: pe ater ater	You may overwrite Leaving a cell blar Reset Ma Ow	e any value in a nk that origina urginal Supply errides	a highlighted oa Ily displayed a o	ell in this section. ¹	Values original	ly displayed a ng the default	re the defa value.

Changing the Marginal Supply from the default of Recycled Water to Groundwater Should Increase BOTH Avoided Costs and Embedded Energy Savings

	Note: all metrics are on a per	• unit basis (Example: pe	r low-flow shower hea	d)		
Measure		Average Annual Embedded IOU	Average Annual Embedded Non-IOU	Average Annual Embedded	Avoided IOU Electric Energy	Avoided Gas Energy Cost
ID#	Measure Name	Electric Energy	Electric Energy	Gas Energy	Cost (2014 \$)	(2014\$)
1	High Efficiency Toilets	18.65	1.38	-	\$133.49	\$ -
2	High Efficiency Toilets	21.70	5.58	-	\$35.86	\$ -
3	High Efficiency Toilets	20.60	6.28	-	\$325.46	\$ -
4	High Efficiency Toilets	20.76	37.06	-	\$394.25	\$ -
5	High Efficiency Toilets	15.38	1.16	-	\$137.90	\$ -
6	High Efficiency Toilets	15.82	1.73	-	\$170.66	\$ -
7	High Efficiency Toilets	15.97	4.09	-	\$274.18	\$ -
8	High Efficiency Toilets	16.54	1.16	-	\$128.73	\$-
9	High Efficiency Toilets	19.67	15.15	-	\$254.04	\$-
	High Efficiency Toilets	14.98	2.55	-	\$324.63	\$-
11		-	-	-	-	-
12		-	-	-	-	-
13		-	-	-	-	-
14		-	-	-	-	-
15		-	-	-	-	-
16		-	-	-	-	-
17		-	-	-	-	-
18		-	-	-	-	-
19		-	-	-	-	-
20		-	-	-	-	-
Total		180.06	76.14	-	\$ 2,179.20	\$-

Notice here, changing the Marginal Supply from the default of Recycled Water to Groundwater **ONLY Increased** Avoided Costs **BUT NOT** Embedded Energy Savings

Should WEN Calculator be reconsidered and simplified?

Recommendations and Rationale

1. WEN Calculator should be reconsidered as the tool to calculate embedded energy savings because the tool

- underestimates savings for Indoor Water Use Measures by not accurately calculating savings based on incorrect assumptions including resource balance year, average energy intensities and water savings profiles not applicable to the calculation;
- overestimates savings for Outdoor Water Use Measures by including conventional tertiary treatment as part of potable treatment for recycled water resulting in overestimated El's for outdoor use measures;
- underestimates savings when Changing Treatment from Conventional to Membrane based on incorrect assumptions including resource balance year, average energy intensities and water savings profiles not applicable to the calculation;
- appears to calculate higher energy intensities for hydro zones SC and SL regardless of marginal supply resulting in HIGHER Annual Embedded for Non-IOU Electric Energy Savings (kWh) BUT NOT HIGHER Annual Embedded IOU Electric Energy Savings (kWh); and
- is calculating **INCREASES** in Avoided Costs **BUT NOT** Embedded Energy Savings when changing marginal supplies.

Recommendations and Rationale

- A simplified version of the tool can be used based on the CPUC approved energy intensity defaults for each marginal supply only
- 2. Historical data should not be used anywhere in the calculation as described in D.15.09.023.
- 3. The WEN Calculator calculates cost-effectiveness and avoided costs that
 - is not well understood;
 - not easily implementable into the CET; and
 - poses unnecessary redundancies in avoided cost and TRC calculations.